000059135 001__ 59135 000059135 005__ 20180211165356.0 000059135 0247_ $$2pmid$$apmid:18088315 000059135 0247_ $$2DOI$$a10.1111/j.1365-313X.2007.03385.x 000059135 0247_ $$2WOS$$aWOS:000253827600005 000059135 037__ $$aPreJuSER-59135 000059135 041__ $$aeng 000059135 082__ $$a580 000059135 084__ $$2WoS$$aPlant Sciences 000059135 1001_ $$0P:(DE-HGF)0$$aHanson, J.$$b0 000059135 245__ $$aThe sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2 000059135 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2008 000059135 300__ $$a935 - 949 000059135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000059135 3367_ $$2DataCite$$aOutput Types/Journal article 000059135 3367_ $$00$$2EndNote$$aJournal Article 000059135 3367_ $$2BibTeX$$aARTICLE 000059135 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000059135 3367_ $$2DRIVER$$aarticle 000059135 440_0 $$015001$$aPlant Journal$$v53$$x0960-7412$$y6 000059135 500__ $$aRecord converted from VDB: 12.11.2012 000059135 520__ $$aTranslation of the transcription factor bZIP11 is repressed by sucrose in a process that involves a highly conserved peptide encoded by the 5' leaders of bZIP11 and other plant basic region leucine zipper (bZip) genes. It is likely that a specific signaling pathway operating at physiological sucrose concentrations controls metabolism via a feedback mechanism. In this paper bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis. bZIP11 affects the expression of hundreds of genes with proposed functions in biochemical pathways and signal transduction. The expression levels of approximately 80% of the genes tested are not affected by bZIP11 promoter-mediated overexpression of bZIP11. This suggests that <20% of the identified genes appear to be physiologically relevant targets of bZIP11. ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2 are among the rapidly activated bZIP11 targets, whose induction is independent of protein translation. Transient expression experiments in Arabidopsis protoplasts show that the bZIP11-dependent activation of the ASPARAGINE SYNTHETASE1 gene is dependent on a G-box element present in the promoter. Increased bZIP11 expression leads to decreased proline and increased phenylalanine levels. A model is proposed in which sugar signals control amino acid levels via the bZIP11 transcription factor. 000059135 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000059135 588__ $$aDataset connected to Web of Science, Pubmed 000059135 650_2 $$2MeSH$$aAmino Acids: metabolism 000059135 650_2 $$2MeSH$$aArabidopsis Proteins: genetics 000059135 650_2 $$2MeSH$$aArabidopsis Proteins: metabolism 000059135 650_2 $$2MeSH$$aAspartate-Ammonia Ligase: genetics 000059135 650_2 $$2MeSH$$aAspartate-Ammonia Ligase: metabolism 000059135 650_2 $$2MeSH$$aBasic-Leucine Zipper Transcription Factors: genetics 000059135 650_2 $$2MeSH$$aBasic-Leucine Zipper Transcription Factors: metabolism 000059135 650_2 $$2MeSH$$aGene Expression Regulation, Plant: physiology 000059135 650_2 $$2MeSH$$aProline Oxidase: genetics 000059135 650_2 $$2MeSH$$aProline Oxidase: metabolism 000059135 650_2 $$2MeSH$$aPromoter Regions, Genetic: physiology 000059135 650_2 $$2MeSH$$aProtein Binding: physiology 000059135 650_2 $$2MeSH$$aSucrose: metabolism 000059135 650_7 $$00$$2NLM Chemicals$$aATB2 protein, Arabidopsis 000059135 650_7 $$00$$2NLM Chemicals$$aAmino Acids 000059135 650_7 $$00$$2NLM Chemicals$$aArabidopsis Proteins 000059135 650_7 $$00$$2NLM Chemicals$$aBasic-Leucine Zipper Transcription Factors 000059135 650_7 $$057-50-1$$2NLM Chemicals$$aSucrose 000059135 650_7 $$0EC 1.5.3.-$$2NLM Chemicals$$aProline Oxidase 000059135 650_7 $$0EC 6.3.1.1$$2NLM Chemicals$$aAspartate-Ammonia Ligase 000059135 650_7 $$2WoSType$$aJ 000059135 65320 $$2Author$$asugar signaling 000059135 65320 $$2Author$$anitrogen metabolism 000059135 65320 $$2Author$$atarget gene 000059135 65320 $$2Author$$aATB2 000059135 65320 $$2Author$$asucrose 000059135 7001_ $$0P:(DE-HGF)0$$aHanssen, M.$$b1 000059135 7001_ $$0P:(DE-Juel1)129420$$aWiese, A.$$b2$$uFZJ 000059135 7001_ $$0P:(DE-HGF)0$$aHendriks, M.M.W.B.$$b3 000059135 7001_ $$0P:(DE-HGF)0$$aSmeekens, S.$$b4 000059135 773__ $$0PERI:(DE-600)2020961-7$$a10.1111/j.1365-313X.2007.03385.x$$gVol. 53, p. 935 - 949$$p935 - 949$$q53<935 - 949$$tThe @plant journal$$v53$$x0960-7412$$y2008 000059135 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-313X.2007.03385.x 000059135 909CO $$ooai:juser.fz-juelich.de:59135$$pVDB 000059135 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000059135 9141_ $$y2008 000059135 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000059135 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1 000059135 970__ $$aVDB:(DE-Juel1)93098 000059135 980__ $$aVDB 000059135 980__ $$aConvertedRecord 000059135 980__ $$ajournal 000059135 980__ $$aI:(DE-Juel1)IBG-2-20101118 000059135 980__ $$aUNRESTRICTED 000059135 981__ $$aI:(DE-Juel1)IBG-2-20101118 000059135 981__ $$aI:(DE-Juel1)ICG-3-20090406