000059160 001__ 59160
000059160 005__ 20200402210426.0
000059160 0247_ $$2pmid$$apmid:17283010
000059160 0247_ $$2DOI$$a10.1093/jb/mvm045
000059160 0247_ $$2WOS$$aWOS:000245676800013
000059160 037__ $$aPreJuSER-59160
000059160 041__ $$aeng
000059160 082__ $$a570
000059160 084__ $$2WoS$$aBiochemistry & Molecular Biology
000059160 1001_ $$0P:(DE-HGF)0$$aPoetsch, A.$$b0
000059160 245__ $$aBiophysics and Bioinformatics Reveal Structural Differences of the Two Peripheral Stalk Subunits in Chloroplast ATP Synthase
000059160 260__ $$aTokyo$$bSoc.$$c2007
000059160 300__ $$a411 - 420
000059160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059160 3367_ $$2DataCite$$aOutput Types/Journal article
000059160 3367_ $$00$$2EndNote$$aJournal Article
000059160 3367_ $$2BibTeX$$aARTICLE
000059160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059160 3367_ $$2DRIVER$$aarticle
000059160 440_0 $$018001$$aJournal of Biochemistry$$v141$$x0021-924x
000059160 500__ $$aRecord converted from VDB: 12.11.2012
000059160 520__ $$aATP synthases convert an electrochemical proton gradient into rotational movement to produce the ubiquitous energy currency adenosine triphosphate. Tension generated by the rotational torque is compensated by the stator. For this task, a peripheral stalk flexibly fixes the hydrophilic catalytic part F1 to the membrane integral proton conducting part F(O) of the ATP synthase. While in eubacteria a homodimer of b subunits forms the peripheral stalk, plant chloroplasts and cyanobacteria possess a heterodimer of subunits I and II. To better understand the functional and structural consequences of this unique feature of photosynthetic ATP synthases, a procedure was developed to purify subunit I from spinach chloroplasts. The secondary structure of subunit I, which is not homologous to bacterial b subunits, was compared to heterologously expressed subunit II using CD and FTIR spectroscopy. The content of alpha-helix was determined by CD spectroscopy to 67% for subunit I and 41% for subunit II. In addition, bioinformatics was applied to predict the secondary structure of the two subunits and the location of the putative coiled-coil dimerization regions. Three helical domains were predicted for subunit I and only two uninterrupted domains for the shorter subunit II. The predicted length of coiled-coil regions varied between different species and between subunits I and II.
000059160 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000059160 588__ $$aDataset connected to Web of Science, Pubmed
000059160 650_2 $$2MeSH$$aAmino Acid Sequence
000059160 650_2 $$2MeSH$$aBiophysical Phenomena
000059160 650_2 $$2MeSH$$aBiophysics
000059160 650_2 $$2MeSH$$aChloroplast Proton-Translocating ATPases: chemistry
000059160 650_2 $$2MeSH$$aComputational Biology
000059160 650_2 $$2MeSH$$aMolecular Sequence Data
000059160 650_2 $$2MeSH$$aProtein Structure, Secondary
000059160 650_2 $$2MeSH$$aProtein Subunits: chemistry
000059160 650_2 $$2MeSH$$aSequence Alignment
000059160 650_2 $$2MeSH$$aSpectroscopy, Fourier Transform Infrared
000059160 650_2 $$2MeSH$$aSpinacia oleracea: enzymology
000059160 650_7 $$00$$2NLM Chemicals$$aProtein Subunits
000059160 650_7 $$0EC 3.6.3.-$$2NLM Chemicals$$aChloroplast Proton-Translocating ATPases
000059160 650_7 $$2WoSType$$aJ
000059160 65320 $$2Author$$abioinformatics
000059160 65320 $$2Author$$aCD spectroscopy
000059160 65320 $$2Author$$adimerization
000059160 65320 $$2Author$$aFoF1
000059160 65320 $$2Author$$aFTIR
000059160 7001_ $$0P:(DE-HGF)0$$aBerzborn, R. J.$$b1
000059160 7001_ $$0P:(DE-Juel1)VDB572$$aHeberle, J.$$b2$$uFZJ
000059160 7001_ $$0P:(DE-HGF)0$$aLink, T. A.$$b3
000059160 7001_ $$0P:(DE-HGF)0$$aDencher, N. A.$$b4
000059160 7001_ $$0P:(DE-HGF)0$$aSeelert, H.$$b5
000059160 773__ $$0PERI:(DE-600)2009977-0$$a10.1093/jb/mvm045$$gVol. 141, p. 411 - 420$$p411 - 420$$q141<411 - 420$$tJournal of biochemistry$$v141$$x0021-924x$$y2007
000059160 8567_ $$uhttp://dx.doi.org/10.1093/jb/mvm045
000059160 909CO $$ooai:juser.fz-juelich.de:59160$$pVDB
000059160 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000059160 9141_ $$y2007
000059160 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000059160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000059160 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000059160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000059160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000059160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000059160 9201_ $$0I:(DE-Juel1)VDB805$$d31.12.2008$$gINB$$kINB-2$$lMolekulare Biophysik$$x1
000059160 970__ $$aVDB:(DE-Juel1)93124
000059160 980__ $$aVDB
000059160 980__ $$aConvertedRecord
000059160 980__ $$ajournal
000059160 980__ $$aI:(DE-Juel1)ISB-2-20090406
000059160 980__ $$aUNRESTRICTED
000059160 980__ $$aI:(DE-Juel1)ICS-6-20110106
000059160 981__ $$aI:(DE-Juel1)IBI-7-20200312
000059160 981__ $$aI:(DE-Juel1)ISB-2-20090406
000059160 981__ $$aI:(DE-Juel1)ICS-6-20110106