000059162 001__ 59162
000059162 005__ 20200402210439.0
000059162 0247_ $$2pmid$$apmid:17033777
000059162 0247_ $$2DOI$$a10.1007/s00249-006-0094-2
000059162 0247_ $$2WOS$$aWOS:000245826200014
000059162 037__ $$aPreJuSER-59162
000059162 041__ $$aeng
000059162 082__ $$a570
000059162 084__ $$2WoS$$aBiophysics
000059162 1001_ $$0P:(DE-HGF)0$$aScheidt, H. A.$$b0
000059162 245__ $$aSolid-state NMR characterization of the putative membrane anchor of TWD1 from Arabidopsis thaliana
000059162 260__ $$aBerlin$$bSpringer$$c2007
000059162 300__ $$a
000059162 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059162 3367_ $$2DataCite$$aOutput Types/Journal article
000059162 3367_ $$00$$2EndNote$$aJournal Article
000059162 3367_ $$2BibTeX$$aARTICLE
000059162 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059162 3367_ $$2DRIVER$$aarticle
000059162 440_0 $$010441$$aEuropean Biophysics Journal : with Biophysics Letters$$v36$$x0175-7571$$y4
000059162 500__ $$aRecord converted from VDB: 12.11.2012
000059162 520__ $$aStructure and membrane interaction of a 31 amino acid residue fragment of the membrane bound FKBP-like protein twisted dwarf 1 (TWD1) from Arabidopsis thaliana was investigated by solid-state NMR spectroscopy. The studied peptide TWD1(335-365) contained the putative membrane anchor of the protein (residues 339-357) that was previously predicted by sequence hydrophobicity analysis. The TWD1 peptide was synthesized by standard solid phase peptide synthesis and contained three uniformly (13)C- and (15)N-labelled residues (Phe 340, Val 350, Ala 364). The peptide was incorporated into either multilamellar vesicles or oriented planar membranes composed of an equimolar ternary phospholipid mixture (POPC, POPE, POPG), where the POPC was sn-1 chain-deuterated. (31)P NMR spectra of the membrane in the absence and in the presence of the peptide showed axially symmetric powder patterns indicative of a lamellar bilayer phase. Further, the addition of peptide caused a decrease in the lipid hydrocarbon chain order as indicated by reduced quadrupolar splittings in the (2)H NMR spectra of the POPC in the membrane. The conformation of TWD1(335-365) was investigated by (13)C cross-polarization magic-angle spinning NMR spectroscopy. At a temperature of -30 degrees C all peptide signals were resolved and could be fully assigned in two-dimensional proton-driven (13)C spin diffusion and (13)C single quantum/double quantum correlation experiments. The isotropic chemical shift values for Phe 340 and Val 350 exhibited the signature of a regular alpha-helix. Chemical shifts typical for a random coil conformation were observed for Ala 364 located close to the C-terminus of the peptide. Static (15)N NMR spectra of TWD1(335-365) in mechanically aligned lipid bilayers demonstrated that the helical segment of TWD1(335-365) adopts an orientation perpendicular to the membrane normal. At 30 degrees C, the peptide undergoes intermediate time scale motions.
000059162 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000059162 588__ $$aDataset connected to Web of Science, Pubmed
000059162 650_2 $$2MeSH$$aArabidopsis Proteins: chemistry
000059162 650_2 $$2MeSH$$aBinding Sites
000059162 650_2 $$2MeSH$$aCell Membrane: chemistry
000059162 650_2 $$2MeSH$$aGlycosylphosphatidylinositols: chemistry
000059162 650_2 $$2MeSH$$aLipid Bilayers: chemistry
000059162 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000059162 650_2 $$2MeSH$$aMembrane Fusion
000059162 650_2 $$2MeSH$$aProtein Binding
000059162 650_2 $$2MeSH$$aTacrolimus Binding Proteins: chemistry
000059162 650_7 $$00$$2NLM Chemicals$$aArabidopsis Proteins
000059162 650_7 $$00$$2NLM Chemicals$$aGlycosylphosphatidylinositols
000059162 650_7 $$00$$2NLM Chemicals$$aLipid Bilayers
000059162 650_7 $$00$$2NLM Chemicals$$aTWD1 protein, Arabidopsis
000059162 650_7 $$0EC 5.2.1.-$$2NLM Chemicals$$aTacrolimus Binding Proteins
000059162 650_7 $$2WoSType$$aJ
000059162 7001_ $$0P:(DE-HGF)0$$aVogel, A.$$b1
000059162 7001_ $$0P:(DE-Juel1)VDB10480$$aEckhoff, A.$$b2$$uFZJ
000059162 7001_ $$0P:(DE-Juel1)132009$$aKoenig, B. W.$$b3$$uFZJ
000059162 7001_ $$0P:(DE-HGF)0$$aHuster, D.$$b4
000059162 773__ $$0PERI:(DE-600)1398349-0$$a10.1007/s00249-006-0094-2$$gVol. 36$$q36$$tEuropean biophysics journal$$v36$$x0175-7571$$y2007
000059162 8567_ $$uhttp://dx.doi.org/10.1007/s00249-006-0094-2
000059162 909CO $$ooai:juser.fz-juelich.de:59162$$pVDB
000059162 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000059162 9141_ $$y2007
000059162 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000059162 9201_ $$0I:(DE-Juel1)VDB805$$d31.12.2008$$gINB$$kINB-2$$lMolekulare Biophysik$$x1
000059162 970__ $$aVDB:(DE-Juel1)93126
000059162 980__ $$aVDB
000059162 980__ $$aConvertedRecord
000059162 980__ $$ajournal
000059162 980__ $$aI:(DE-Juel1)ISB-2-20090406
000059162 980__ $$aUNRESTRICTED
000059162 980__ $$aI:(DE-Juel1)ICS-6-20110106
000059162 981__ $$aI:(DE-Juel1)IBI-7-20200312
000059162 981__ $$aI:(DE-Juel1)ISB-2-20090406
000059162 981__ $$aI:(DE-Juel1)ICS-6-20110106