000059284 001__ 59284
000059284 005__ 20240712100917.0
000059284 0247_ $$2Handle$$a2128/16057
000059284 037__ $$aPreJuSER-59284
000059284 041__ $$aeng
000059284 082__ $$a550
000059284 1001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b0$$uFZJ
000059284 245__ $$aQuantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003
000059284 260__ $$aKatlenburg-Lindau$$bEGU$$c2007
000059284 300__ $$a17559 - 17597
000059284 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059284 3367_ $$2DataCite$$aOutput Types/Journal article
000059284 3367_ $$00$$2EndNote$$aJournal Article
000059284 3367_ $$2BibTeX$$aARTICLE
000059284 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059284 3367_ $$2DRIVER$$aarticle
000059284 440_0 $$08621$$aAtmospheric Chemistry and Physics / Discussions$$v7$$x1680-7367
000059284 500__ $$aThe authors would like to thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the meteorological data, and N. Spelten, N. Thomas and R. Bauer for excellent support with data handling and programming.
000059284 520__ $$aStrong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS) utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex. filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement.Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relativel undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results.
000059284 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000059284 588__ $$aDataset connected to Web of Science
000059284 650_7 $$2WoSType$$aJ
000059284 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b1$$uFZJ
000059284 7001_ $$0P:(DE-HGF)0$$avon Hobe, M.$$b2
000059284 7001_ $$0P:(DE-Juel1)129158$$aStroh, F.$$b3$$uFZJ
000059284 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b4$$uFZJ
000059284 7001_ $$0P:(DE-HGF)0$$aVolk, C.$$b5
000059284 773__ $$0PERI:(DE-600)2069857-4$$gVol. 7, p. 17559 - 17597$$p17559 - 17597$$q7<17559 - 17597$$tAtmospheric chemistry and physics / Discussions$$v7$$x1680-7367$$y2007
000059284 8564_ $$uhttps://juser.fz-juelich.de/record/59284/files/acpd-7-17559-2007.pdf$$yOpenAccess
000059284 8564_ $$uhttps://juser.fz-juelich.de/record/59284/files/acpd-7-17559-2007.gif?subformat=icon$$xicon$$yOpenAccess
000059284 8564_ $$uhttps://juser.fz-juelich.de/record/59284/files/acpd-7-17559-2007.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000059284 8564_ $$uhttps://juser.fz-juelich.de/record/59284/files/acpd-7-17559-2007.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000059284 8564_ $$uhttps://juser.fz-juelich.de/record/59284/files/acpd-7-17559-2007.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000059284 909CO $$ooai:juser.fz-juelich.de:59284$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000059284 9141_ $$y2007
000059284 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000059284 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000059284 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000059284 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000059284 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000059284 970__ $$aVDB:(DE-Juel1)93283
000059284 9801_ $$aFullTexts
000059284 980__ $$aVDB
000059284 980__ $$aConvertedRecord
000059284 980__ $$ajournal
000059284 980__ $$aI:(DE-Juel1)IEK-7-20101013
000059284 980__ $$aUNRESTRICTED
000059284 981__ $$aI:(DE-Juel1)ICE-4-20101013
000059284 981__ $$aI:(DE-Juel1)IEK-7-20101013