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Vibrational heating of molecules adsorbed on insulating surfaces using localized photon
tunneling
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We calculate the (average) temperature increase in an adsorbed molecule resulting from heat transfer (photon
tunneling) from a tip located at a short distance (nanometers) from the adsorbate. For adsorbates on insulating
substrates, the temperature increase may be so large as to induce local reactions—e.g., diffusion or desorption
of the adsorbate. We conclude that photon tunneling may be used for the manipulation of adsorbed molecules

or for the modification of thin adsorbed films.
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It is well known that for bodies separated by d> >d;
=ch/kgT (at room temperature dy=~10* nm), the radiative
heat transfer between them is connected with traveling elec-
tromagnetic waves radiated by the bodies and does not de-
pend on the separation d. For d<dj the heat transfer in-
creases by many orders of magnitude due to the evanescent
electromagnetic waves that decay exponentially into the
vacuum; this is often referred to as photon tunneling. At
present there are an increasing number of investigations of
heat transfer due to evanescent waves in connection with
scanning probe microscopy under ultrahigh vacuum
conditions.'~*

The radiative heat transfer due to the evanescent electro-
magnetic waves (photon tunneling) may be used for surface
modification. Thus, if a hot tip is brought ~1 nm from a
surface with a thin layer of heat sensitive polymer, one may
induce local polymerization and this may be used for nanos-
cale lithography. Such measurements with the tip in direct
contact with the polymer film have already been
performed.'® However, enough heat transfer for polymeriza-
tion may occur also for noncontact if the tip-substrate sepa-
ration is short enough and the tip temperature high enough.
This noncontact mode of surface modification may have sev-
eral advantages as compared to the contact mode; e.g., no
wear or contamination of the tip will occur.

In this brief communication we show that a sharp tip—
e.g., a scanning tunneling microscope (STM) or atomic force
microscope (AFM) tip—can be used for local heating of the
surface, resulting in local desorption or decomposition of
molecular species, and this offers further possibilities for
control of local chemistry at the surface. Vibrational heating
(vibrational ladder climbing) by inelastic tunneling electrons
from a tip of the STM has been a great subject in single
adsorbate motions.'!!

Here we study the radiative heat transfer between an ad-
sorbed molecule on a tip and another molecule adsorbed on a
substrate. We show that the temperature increase at the ad-
sorbed molecule may be very large, which may induce local
chemical reactions—e.g., diffusion or desorption. Heat trans-
fer to some adsorbate vibrational mode—i.e., vibrational
heating—will be particularly important when the energy re-
laxation time 7, of the adsorbate mode is long compared to a
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relaxation time characterizing the photon tunneling from the
tip to the substrate adsorbate. High-frequency adsorbate vi-
brations on metals typically have very short energy relax-
ation times (in the picosecond range) owing to the continu-
um of low-energy electronic excitations.'>!'* However,
low-frequency  adsorbate  vibrations—e.g.,  frustrated
translations—may have rather long relaxation times (typi-
cally of the order of nanoseconds for inert adsorbates on
noble metals),’> and in these cases photon tunneling heat
transfer may be important. Adsorbate vibrational modes on
insulators may have very long relaxation times if the reso-
nance frequency is above the top of the bulk phonon band. In
these cases energy relaxation is caused by multiphonon pro-
cesses which often are very slow. One extreme example is
CO adsorbed on NaCl crystals,'® where 7,~ 107 s. For this
case even a very weak coupling to a hot tip may result in
heating of the C-O stretch vibration.

The photon tunneling energy transfer per unit time from
the tip adsorbate to the substrate adsorbate (see Fig. 1) is
given by?

26 [~ (8/d°)* Tm e, Im o,
J=—| d /T,) — /Ty)],
’ITL @ [1 - (8/d%) | [n(@/Ty) =n(w/T;)}
(1)
where the Bose-Einstein factor
n(w/T) = ()

exp(hwlkgT) - 1"

We will focus on the energy transfer from a vibrational mode
(frequency w, and vibrational relaxation time TZ) of the tip
adsorbate to a vibrational mode (w,, TZ) of the substrate ad-
sorbate. We also introduce the vibrational energy relaxation
times 7, and 7,. We assume that the molecular vibrations can
be treated as harmonic oscillators and assume the molecular
polarizabilities

a, = T\ (3a)
. 2(2 _ ;)
W, \ W, Tzwa
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FIG. 1. The heat transfer (photon tunneling) between a tip atom
(or molecule) and a substrate atom (or molecule).
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Note that in general 1/7-::> 1/7, and 1/ TZ>1/ 7, since the
vibrational relaxation rate 1/7 which enters in the polariz-
ability has contributions from both energy relaxation and

pure dephasing.l9 The energy transfer rate from the tip to the
tip adsorbate is given by!713

(3b)

ho
a= _,a[n(wa/TO) _n(wa/Ta)]’ (4)

a

and the energy transfer rate from the substrate adsorbate to
the substrate is

h
Jy= "2y Ty) - n(wy/Ty)]. 5)
Th

In general the integral (1) must be performed numerically,
but as an illustration let us consider the case where the re-
laxation time 7,> > 7,. In this case Eq. (1) reduces to

h
J=r—2n(wy/T,) - n(ay/Ty)], (6)
Th

where

(/7,)s
r: *. b
1+[2(w, — wp)7, 1> +4s

5 = 640, T, w0y T 0ty ot/ d°. (7)

Note that the energy transfer rate J, (and similar for J,)
depends only on the energy relaxation rate 1/7, and not on
the relaxation rate 1/7, which determines the width of the
vibrational resonance state. The latter is the sum of 1/7, and
a pure dephasing contribution which reflect the fluctuation
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w,(f) in the vibrational level position due to the irregular
thermal motion of the atoms in the system and which depend
on the anharmonic coupling between the different vibrational
modes. This level fluctuation contributes to the vibrational
linewidth as observed using, e.g., infrared spectroscopy, but
not to the energy transfer between the adsorbate and the solid
on which it is adsorbed. On the other hand, the energy trans-
fer rate J between the two adsorbates is determined by the
overlap in the vibrational resonance states and it is therefore
determined by 7, (and 7,), and does not depend on 7, (or 7).
[Note that the 7' factor which appears in Eq. (6) cancels out
against the factor 7, in the expression for r.]

In the high-temperature limit n(w/T)=~kgT/hw and as-
suming that this relation holds for all modes and tempera-
tures relevant here, we get

J=r7 kg (T, = Tp). (8)
We also get

J,=7,'kg(Ty—T,). (9)

Jo= 175 k(T = T)). (10)

Assuming first a steady-state situation so that J=J,=J, we
get, from Egs. (8)—(10), T,~T, and

-
T,=T+—(Ty-T)), (11)
1+r

where we have assumed that 7,> > 7.

The theory above can also be used to estimate the time it
takes to reach the steady state where the (ensemble-
averaged) adsorbate temperature equals (11). In general we
have

d
ﬁwban[wb/Tb(t)] = J(t) - Jb(t) .

In the classical limit this gives

dr,

1 1
=— _(1 +r)Tb+ _(Tl +rTo).
dt Th T

b

If we assume T,,(0)=T), this gives
To(0) =Ty + ——(Ty = T)(1 - &),
1+r

Thus for > > 7, where 7=7,/(1+7), the steady-state tem-
perature has been reached.

For adsorbates on insulating substrates 7, will, in general,
be very large if the resonance frequency w, is well above the
highest substrate phonon frequency. We now consider this
case, which is equivalent to low temperature. Assume for
simplicity that the temperature of the substrate vanishes (T}
=0) and assume that fiw, > >kgT, and fiw, > > kgT). In this
case it is easy to show from Egs. (4)-(6) that T,~ T, and

_ w,Ty
o, + Ty In[(1+7r)/r]’

(12)

where we have measured the frequency in units of kg/7.
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FIG. 2. (Color online) The adsorbate temperatures T, and T, as
a function of the tip temperature Tj (all in units of Aw,/kg) for r
=0.25 and T,=0.1Awy/ k.

Let us now assume arbitrary tip and substrate tempera-
tures but still assume 7,> 7,. Using Egs. (4)-(6) we get T,
~T, and

Wy, 1+r

=In| 1 + . 13
T, n (e To— 1)1 4 (e™/T1 — 1)) (13)

This expression reduces to (11) for high temperatures and to
(12) for low temperatures. In Fig. 2 we show the effective
temperature T}, as a function of the tip temperature 7,, when
Tl =0.lﬁwb/kB and r=0.25.

In Figs. 3 and 4 we show the temperature of the tip ad-
sorbate, T, (red curve), and of the substrate adsorbate, T}, as
a function of the tip temperature T, all in units of Awy/kg.
These results have been obtained directly from Egs. (1)—(5)
by numerical integration. Note that the temperature of the
substrate adsorbate increases monotonically as the energy re-
laxation time 7, increases, corresponding to a weaker
adsorbate-substrate vibrational coupling. Figure 4 shows
that, as expected, the mismatch of the vibrational frequency
between the tip and substrate adsorbates reduces the heat
transfer between the adsorbates.

Figure 5 shows the dependence of the tip- and substrate-
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FIG. 3. (Color online) The tip- and substrate-adsorbate tempera-
tures T, and Ty, as a function of the tip temperature 7|, (all in units
of hwp/kg). For d=10A, a,=02A3, a,=0.04 A3 7,=3
X1071s, 7.=3X 10725, =3 X102 s, w,=w,=1.0X 10" 1/s,
and 71=0.1%2wy/kg.
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FIG. 4. (Color online) The same as Fig. 3, except for the off-
resonant vibrational frequency ,=1.0X10"s™! and w,=1.1
X108 571,

adsorbate temperatures 7, and T}, on the tip-substrate sepa-
ration d. Note that the substrate-adsorbate temperature rap-
idly decreases as the separation d increases.

The effective substrate-adsorbate temperature 77, calcu-
lated above may be used to calculate (or estimate) the rate w
of an activated process: w=w exp(—=E/kgT};). When the bar-
rier height E is large, even a very small temperature increase
will result in a large increase in the reaction rate. Note also
that the excitation of a high-frequency mode such as the C-O
stretch mode can result in reactions—e.g., diffusion, rotation,
or desorption—involving other reaction coordinates. This is
possible because of the anharmonic coupling between the
high-frequency mode and the reaction coordinate mode. This
has already been observed in STM studies of several differ-
ent adsorption systems.?%?!

Let us give an example of an adsorption system where
photon tunneling may give rise to a strong temperature in-
crease. We focus on *C'®0 on NaCl(100) at 7;=30 K which
has been studied in detail by Chang and Ewing.'® In this case
0,~2040 cm™!, 7,=107 s (due mainly to decay via mul-
tiphonon emission'®), and the (pure dephasing dominated)
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FIG. 5. (Color online) The dependence of the tip- and substrate-
adsorbate temperatures T, and T}, on the tip-substrate separation d.
For the same parameters as in Fig. 3 and 7,=3 X 1078 s.
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relaxation time?? 7,~107'"s. We assume a Pt tip at room
temperature with an adsorbed *C'*0 with w,~2064 cm™
and®? TZZ3 X 107'2 s mainly due to decay by excitation of
electron-hole pairs. Using the experimental measured vibra-
tional polarizability a,,~0.2 A’ and a,,~0.04 A3 and as-
suming a tig-substrate separation d=1 nm we get s=20 and
2(w,— w,)7,~16. Thus from (7) we get r=~10°% and from
(13) we get T, =300 K where we have assumed the tip tem-
perature 7(=300 K. The CO/NaCl case is an extreme case
because of the exceptionally long vibrational energy relax-
ation time. However, the analysis presented above remains
unchanged for any 7, larger than 1078 s, so the conclusions
are very general. Thus we expect strong heating effects due
to photon tunneling for high-frequency modes in adsorbed
layers or films on insulating substrates.

The temperature increase for the C-O stretch vibration
found above is similar to the temperature increase observed
(or calculated) for CO on Pd(110) during STM
experiments.”’ In this the case the excitation of the C-O
stretch vibration is caused by inelastic tunneling. The tem-
perature increase in the C-O stretch mode resulted in CO
diffusion as a result of energy transfer to the parallel frus-
trated translation because of anharmonic coupling. This has
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been observed for CO molecules on Pd (110) (Ref. 20) and
on Ag (110) (Ref. 24). We expect similar decay processes for
vibrational excited CO on NaCl resulting, e.g., in diffusion
or desorption of the CO molecule.

To summarize, we have calculated the temperature in-
crease in adsorbed molecules due to photon tunneling from a
tip. The temperature increase can be very large, in particular
if the vibrational mode has a long vibrational lifetime. The
temperature increase may induce diffusion, desorption, or
other reactions, and we suggest that localized photon tunnel-
ing may be useful for local surface modification in adsorbate
layers and thin adsorbed films. This technique is complemen-
tary to vibrational heating with STM, since STM can only be
performed on conducting substrates, while the vibrational
heating from photon tunneling is also possible for AFM and
is particularly effective for insulating substrates because of
the absence of electron-hole pair induced vibrational damp-
ing.
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