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Abstract. The effect of Rashba spin-orbit interaction in quantum wires with hard-

wall boundaries is discussed. The exact wave function and eigenvalue equation are

worked out pointing out the mixing between the spin and spatial parts. The spectral

properties are also studied within the perturbation theory with respect to the strength

of the spin-orbit interaction and diagonalization procedure. A comparison is done

with the results of a simple model, the two-band model, that takes account only of the

first two sub-bands of the wire. Finally, the transport properties within the ballistic

regime are analytically calculated for the two-band model and through a tight-binding

Green function for the entire system. Single and double interfaces separating regions

with different strengths of spin-orbit interaction are analyzed injecting carriers into

the first and the second sub-band. It is shown that in the case of a single interface the

spin polarization in the Rashba region is different from zero, and in the case of two

interfaces the spin polarization shows oscillations due to spin selective bound states.

PACS numbers: 72.25.Dc,73.23.Ad, 72.63.-b
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1. Introduction

The Spintronics [1] is one of the most prominent fields of modern condensed matter

physics. Its target is to use spin to create electrical and optoelectronic devices with new

functionalities [2]. Up to now, starting form the seminal device by Datta and Das [3],

several devices based on the giant and tunnel magnetoresistance have been realized for

read-head sensors and magnetic random-access memories [2]. The important task of

the integration of such spintronics technologies with the classical semiconductor devices

finds an obstacle in the small spin injection from magnetic to semiconductor materials

due to the large resistivity mismatch between magnetic and semiconductor materials [4].

For this reason it is useful to design semiconductor devices with an efficient all-electrical

spin-injection and detection via Ohmic contacts at the Fermi energy, as it has been

already realized for metallic devices [5, 6].

Two important classes of spin-orbit interaction (SOI) are relevant for semiconductor

spintronics: the Dresselhaus type [7] and the Rashba type [8] coupling. The former

arises from the lack of symmetry in the bulk inversion whereas the latter arises

from the asymmetry along the growing-direction-axis of the confining quantum well

electric potential that creates a two-dimensional electron gas (2DEG) on a narrow-

gap semiconductor surface. Since the Rashba SOI can be tuned by an external gate

electrode [9, 10, 11] it is envisaged as a tool to control the precession of the electron

spin in the Datta-Das proposal for a field-effect spin transistor [3].

Quasi-one-dimensional electron gases or quantum wires (QWs) are realized by

applying split gates on top of a 2DEG in a semiconductor heterostructure [12]. The

main effect owing to the confining potential is quantization of the electron motion

in the direction orthogonal to the wire axis. The combination of this confining

potential and the Rashba SOI gives rise to sub-band hybridization that can affect the

working principle of the field-effect spin transistor. Mireles and Kirczenow [13] have

numerically studied this effect and they have shown that a large value of the Rashba

SOI can produce dramatic changes in the transport properties of the device till to

suppress the expected spin modulation. The effect of sub-band hybridization has been

investigated by Governale and Züelike [14] in a QW with parabolic confinement. They

show that electrons with large wave vectors in the lowest spin-spit sub-bands have

essentially parallel spin. But in proximity of the anti-crossing points due to the sub-

band hybridization it is no more appropriate to use the spin quantum number in order

to characterize the electron state in the QW. Furthermore, they show that it is not

possible to transfer the finite spin polarization of the QW to some external leads.

In this Article we study the spectral and the transport properties of a QW in

the presence of SOI. The main result of this Article is to show how to achieve non-

zero spin polarization in external leads using spin unpolarized injected carriers. This

can be obtained by injecting carriers in all the active sub-bands due to the quantum

confinement. At the opening of each new sub-band the hybridization owing to SOI gives

rise to spin selective bound states reflecting in a oscillating spin polarization. Here, we
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want to stress that those spin polarized bound states are not in contradiction with any

fundamental symmetry property of the system [15].

This Article is organized in the following way: in Sec. 2 we evaluate the spectral

properties using the wave function approach [16, 17, 18]. In Sec. 3 we provide an

exact calculation for the spectral properties investigated within the perturbation theory

approach and with the exact diagonalization in a truncated Hilbert space. Here we also

introduce a minimal model featuring the basic characteristic of a QW with SOI named

two-band model. This is used in Sec. 4 in order to study the transport properties of a

QW in presence of a single interface between a region with and without SOI and in the

case of a double interface (spin-field effect transistor scheme). Conclusions are ending

the Article.

2. Exact solution of Rashba quantum wire: wave-function

Let us consider a 2DEG filling the plane (x, z). The charge carriers have momentum

~p ≡ (px, pz) and effective mass m. The particles are confined along the z-direction

by the potential V (z) and subjected to the Rashba spin-orbit interaction (SOI). The

single-particle Hamiltonian reads

H =
1

2m

(

p2x + p2z
)

+ V (z) +HR, (1)

where HR is the Rashba SOI

HR =
~kSO
m

(σzpx − σxpz) . (2)

In Eq.(2) σx and σz are the x and z components, respectively, of the vector ~σ of Pauli

matrices, and kSO is the SOI constant. This can be tuned by means of external gates

perpendicular to the 2DEG [9, 10, 11].

In the following we assume that the potential V (z) provides a confinement with hard

walls at z = 0 and z = W . The strategy to find the wave-function of the Hamiltonian

(1) is similar to the procedure followed in the absence of SOI: one exactly solves the

2D problem, then considers the quantizing effect of confinement on the wave function

ψ(x, z). In the first subsection we shortly recall the spin-dependent solution of the 2DEG

with SOI, then we impose the boundary conditions ψ(x, z = 0) = ψ(x, z = W ) = 0. In

the presence of SOI, these relations mix the z part of the wave-function with its spinor

component.

2.1. Solution without confinement

Without confinement both components of the momentum ~p = ~~k are conserved. The

eigenfunctions of the Hamiltonian (1) in the absence of confining potential V (z) = 0 are

denoted by the two spin modes (+) and (−) and read

ψ~k,+ (x, z) = exp [i(kxx+ kzz)]

(

cos(θ/2)

− sin(θ/2)

)

, (3a)
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Figure 1. (Left Panel) Spectrum of the two-dimensional electron gas in the presence

of SOI interaction as a function of the wave-vectors kx and ky. At fixed positive energy,

the wave-vectors of the mode (+) and (−) are on two concentric circles (radius for (−)

mode larger than that for the (+) mode).(Right Panel) At fixed positive energy and x

component of the wave-vector, the 4 possible values of the z component are shown.

ψ~k,− (x, z) = exp [i(kxx+ kzz)]

(

sin(θ/2)

cos(θ/2)

)

, (3b)

whose corresponding eigenvalues are given by

E± =
~
2

2m

(

k2 ± 2kkSO
)

, (4)

where k =
√

k2x + k2z is the modulus of the wave-vector in x-z plane, kx = k cos(θ),

kz = k sin(θ), with θ the angle formed between the vector ~k and the x axis. It is clear

for Eqs. (3a,3b) that the spinors χ± of the two modes are orthogonal to each other.

We remind that the Rashba SOI can be viewed as a magnetic field parallel to the (x, z)

plane and orthogonal to the wave-vector ~k. The net effect is to orientate the spin along

the direction perpendicular to the wave-vector [16].

In order to determine the solution with confinement, it is essential to find the

eigenfunctions in the free case when the total energy E and the momentum along kx are

fixed (See Fig. 1). Fixing the total energy E , we note that there are two values of total

momentum k, corresponding to the different modes, fulfilling the Eq. (4) expressed as

a linear combination of those four waves:

k± =

√

2m

~2
E + k2SO ∓ kSO. (5)

The propagation directions for the k± modes are fixed by the momentum kx. For

E > 0, the mode (+) is characterized by the propagation direction ±α = arccos(kx/k+)

fixing the value of kz = ±k+ sin(α), whereas the mode (−) has propagation direction

±β = arccos(kx/p−) and kz = ±k− sin(β). Therefore, the generic wave function
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ψE,kx(x, z) is given by

ψE,kx (x, z) = eikxx
[

Aψ
(+)
1,E(z) +Bψ

(+)
2,E(z) + Cψ

(−)
1,E(z) +Dψ

(−)
2,E(z)

]

, (6)

with

ψ
(+)
ℓ,E (z) = e−i(−1)ℓk+z sin(α)

(

cos(α/2)

(−1)ℓ sin(α/2)

)

, (7)

ψ
(−)
ℓ,E (z) = e−i(−1)ℓk−z sin(β)

(

−(−1)ℓ sin(β/2)

cos(β/2)

)

, (8)

and ℓ = 1, 2.

For−k− ≤ kx < −k+ or k+ < kx ≤ k−, the wave-function (6) is still valid. However,

one has α = ia, implying that cos(α) = cosh(a) and sin(α) = i sinh(a), therefore the

(+) mode becomes an evanescent one. Moreover, if kx > k− or kx < −k−, then β = ib

and also the (−) mode changes into an evanescent one.

For E < 0 the 4 values of kz are only relative to modes (−). A wave-function similar

to (6) can be written. Also in this case the Fermi surface is formed by two circles but

now they correspond to the same energy E−. However, in the next section, we will see

that, from weak to intermediate values of the Rashba SO coupling, only positive values

of the energy are important due to the effect of the confinement.

2.2. Solution with confinement

The wave-function (6) represents the starting point for taking account of the

confinement. In fact, the hard wall boundary conditions are obtained by imposing

that the wave-function is zero on the borders (z = 0 and z = W ): ψE,kx(x, z = 0) =

ψE,kx(x, z =W ) = 0. For E > 0, we get the following exact eigenvalue equation for the

Rashba quantum wire

1− cos[k+W sin(α)] cos[k−W sin(β)] +

sin[k+W sin(α)] sin[k−W sin(β)]
[1 + cos(α) cos(β)]

sin(α) sin(β)
= 0. (9)

Therefore, via the SOI, the quantities k+ and k−, and clearly the energy, are related to

the spinor components of the wave-function. A similar equation is valid for E < 0.

In the absence of SOI, the quantized energy levels are independent of spin behavior.

Actually, one gets k± =
√

2mE/~2 and α = β. This yields
√

2mE

~2
W sin(α) = nπ, (10)

with n being a positive integer number, so that, together with the relation cos(α) =

kx/k±, we obtain

En =
~
2

2m

(

n2π2

W 2
+ k2x

)

, (11)

which are the energy values for the sub-bands of the quantum wire without SOI.
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In the presence of SOI, an important limit is obtained for kx = 0. Indeed the

eigenvalue equation becomes

cos[(k+ + k−)W ] = 1, (12)

implying that

En =
~
2

2m

(

n2π2

W 2
− k2SO

)

. (13)

Therefore, all the sub-bands are shifted down by the SOI term k2SO. For values of the

SOI such that kSO < π/W , the energies are positives and the wave function (6) holds

true. This means that the spin-precession length LSO = π/kSO has to be larger than

the wire width.

3. Two-band model and perturbation theory

In the previous section we started from the wave-function of the 2D model with SOI, and

then imposed the conditions due to confinement. Now, we consider the opposite point of

view. First we take into account the exact solution of the quantum wire in the absence

of the SOI, then we study its effect on the sub-bands. Because of SOI, a coupling

between sub-bands with opposite spins occurs. In order to study the effects of this

coupling, in the first subsection we will discuss the results within the first- and second-

order perturbation theory approach with respect to the SOI. In the second subsection

we consider the two-band model, where only the first two bands of the unperturbed

spectrum are assumed to be coupled by the interaction. This assumption is valid if the

wire is very narrow. Moreover, this simple system is studied since it provides a simple

understanding of the transport properties. Finally, in the third subsection, we will show

the results of the exact diagonalization of the model.

The Hamiltonian (1) is considered to be split into two terms: H0 and HR. The

term H0 is simply the Hamiltonian of the wire without SOI:

H0 =
1

2m

(

p2x + p2z
)

+ V (z), (14)

where V (z) is the hard-wall confining potential. Due to the presence of the potential

V (z), only the momentum px = ~kx is conserved. We find the matrix elements of H

in the basis of H0 indicated by |kx, n, σ〉, with n index of the sub-band and σ = ±1

for up or down spin, respectively. The SOI term contains terms σzpx and −σxpz. For

ℓ = n, only the former term of HR is acting on the unperturbed states with the same

spin state, so that the matrix elements are

〈kx, ℓ, σ|HR|kx, n, σ
′〉 =

~
2kSOkx
m

σ′δσ,σ′ , (15)

while, for ℓ 6= n, the latter term HR couples sub-bands with opposite spin and parity,

so that the matrix elements are

〈kx, ℓ, σ|HR|kx, n, σ
′〉 = Jℓ,nδσ,−σ′ , (16)
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with Jℓ,n independent of the wave-vector kx

Jℓ,n =
i~2kSO
mW

2ℓn

ℓ2 − n2

[

1− (−1)|ℓ−n|
]

. (17)

If we express the energies in the unit ~2/2mW 2, the lengths in W and the wave-vectors

in 1/W , we recast the following matrix elements for the entire Hamiltonian H:

〈kx, ℓ, σ|H|kx, n, σ
′〉 =

[

Ē(0)
n (k̄x) + 2k̄SOk̄xσ

′
]

δℓ,nδσ,σ′ +

J̄ℓ,n[1− δℓ,n]δσ,−σ′ , (18)

where k̄x = kxW , Ē
(0)
n (k̄x) = k̄2x + n2π2, k̄SO = kSOW , and J̄ℓ,n proportional to the

dimensionless SOI term k̄SO

J̄ℓ,n = ik̄SO
4ℓn

ℓ2 − n2

[

1− (−1)|ℓ−n|
]

. (19)

3.1. Perturbation theory

The correction to the unperturbed energies Ē
(0)
n within the first-order perturbation

theory is simply derived considering only the diagonal terms of Eq.(18). Therefore,

at first-order, the n-th sub-band is simply affected by the spin slitting due to the

contribution σzpx of HSO:

Ē(1)
n,σ(k̄x) = Ē(0)

n (k̄x) + 2k̄SOk̄xσ, (20)

and eigenvectors equal to those of the unperturbed system. This splitting controlled by

SOI gives rise to a first-order spectrum with crossings between sub-bands with opposite

spins. For example, the first and second sub-band intersect at k̄x = ±3π2/4k̄SO and

the others for larger values of k̄x. This suggests that the full effect of the interaction

should remove this crossing by mixing the behavior of coupled sub-bands. Due to the

presence of those level crossings, the correction to the energy levels within the second-

order perturbation theory fails for values of k̄x close to intersections. Far from the

crossing points, it is easy to derive the contribution in the second-order to the energy

Ē(2)
n,σ =

∑

ℓ(6=n)

∑

σ′(6=σ)

|J̄ℓ,n|
2

π2(n2 − ℓ2)
= −k̄2SO, (21)

a quantity independent of kx, n and σ. This result is indubitably valid for k̄x = 0.

Indeed, it coincides with the result (13) obtained in the previous section by using the

exact wave-function. This shows that at k̄x = 0 the energy correction within the second-

order perturbation theory is able to fully describe the energy spectrum. Also, the

correction of the wave-function at first-order can be evaluated. If at zero-order the spin

is σ, at first-order one takes contribution from −σ:

ψ(1)
n,σ(z) =

k̄SO
4π2

√

2

W
[S1,n(z)− S2,n(z)] | − σ〉 , (22)

with

S1,n(z) = Φ

(

e−2iπz/L, 2,
−n

2

)

− Φ
(

e−2iπz/L, 2,
n

2

)

, (23)
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and

S2,n(z) = Φ

(

e2iπz/L, 2,
−n

2

)

− Φ
(

e2iπz/L, 2,
n

2

)

, (24)

where Φ(x, s, a) =
∑∞

k=0 x
k/(a+ k)s is the Lerch transcendent function [19].

3.2. Two-band model

In order to investigate the effects of the coupling between sub-bands induced by SOI, it

is convenient to analyze the two-band model that will be also considered in the section

devoted to transport properties. This model takes only the first and the second sub-

band of the unperturbed wire into account . The 4 × 4 problem can be decoupled

into two 2 × 2 problems. The only thing to evaluate is J̄1,2 = −i16k̄SO/3. One gets 4

eigenvalues [13, 14]:

ǫ1+(k̄x) =
5π2

2
+ k̄2x − g1(k̄x), ǫ1−(k̄x) = ǫ1+(−k̄x), (25)

ǫ2+(k̄x) =
5π2

2
+ k̄2x − g2(k̄x), ǫ2−(k̄x) = ǫ2+(−k̄x), (26)

with

g1(k̄x) =
1

2

√

(3π2 − 4k̄xk̄SO)2 +
1024k̄2SO

9
, g2(k̄x) = g1(−k̄x). (27)

The eigenvectors can also be calculated. For example, the eigenvector corresponding to

ǫ1+ is

ψ1+(x, z) = eikxx
√

2

W

1
√

1 +
[

f1
(

k̄x
)]2

(

sin
(

πz
W

)

if1
(

k̄x
)

sin
(

2πz
W

)

)

, (28)

with f1
(

k̄x
)

given by

f1
(

k̄x
)

=
3

16k̄SO

[

−
3π2

2
+ 2k̄SOk̄x + g1(k̄x)

]

. (29)

As shown in Fig. 2, the eigenvalues (solid lines) do not show any intersection for

kx different from zero. Therefore, the inter-band coupling removes the crossings of the

first-order perturbation theory solution (dashed line). As a result, the energy eigenstates

are no longer eigenstates of σz [14] and the spin state depends on the wave-vector kx.

Close to the crossing point, the wave function of 1 ↑ and 2 ↓, for example, are strongly

mixed in the mode 1+. However, far from the intersection, the mode given by the

diagonalization preserves the original behavior of the component wave-functions. For

example, if we analyze the behavior of the eigenstate ψ1+(x, z), we get

lim
kx→−∞

ψ1+(x, z) = ψ1↑(x, z), lim
kx→∞

ψ1+(x, z) = ψ2↓(x, z). (30)

The behavior of the two-band model shows a general trend: only taking into account

the coupling between sub-bands the description is qualitatively correct. The crossing
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Figure 2. Energy levels of the two-band model (in units of ~2/2mW 2) as a function

of the dimensionless wave-vector kxW for the value kSOW = π of the dimensionless

spin-orbit parameter. The spectrum derived from the diagonalization of the two-band

system, indicated in figure by 1+, 1−, 2+, and 2− (solid lines), is compared with that

from first-order perturbation theory, indicated by 1 up, 1 down, 2 up, 2 down (dashed

lines).

are artifacts of the lowest-order perturbation theory. The spectrum within the two-

band model is reliable only for very narrow wires. In the general case, the low-energy

description given by this model is too poor for the bands 2+ and 2−. This can be easily

seen if one considers the energy values at kx = 0. In fact one gets for sub-bands 1± and

2±, respectively, the achieved values are

ǫ1± =
5π2

2
−

1

2

√

9π4 +
1024k̄2SO

9
, (31a)

ǫ2± =
5π2

2
+

1

2

√

9π4 +
1024k̄2SO

9
. (31b)

In the limit of small k̄SO, they become

ǫ1± = π2 −
256

27π2
k̄2SO ≃ π2 − 0.961k̄2SO , (32a)

ǫ2± = 4π2 +
256

27π2
k̄2SO ≃ 4π2 + 0.961k̄2SO. (32b)

From the comparison with the exact solution we find that the lowest sub-bands acquire

a correction with the right sign and very close to the exact result, while the upper sub-

bands have even the wrong sign. Therefore, in order to give a reasonable description of

the low-energy part of the spectrum, more bands are necessary. This will also play an

important role in the transport properties.

3.3. Exact diagonalization

In order to verify the importance of including more than two sub-bands, one can directly

diagonalize the Hamiltonian of the system [14]. This can be done considering the



Rashba quantum wire: exact solution and ballistic transport 10

-2π -π 0 π 2π
k

x
W

0

5

10

15

E
n
er

g
y

Figure 3. Energy levels of the wire (in units of ~
2/2mW 2) as a function of the

dimensionless wave-vector kxW for the value kSOW = π of the dimensionless spin-

orbit parameter. The spectra derived from the diagonalization of the system with 3

sub-bands (solid line) and 2 sub-bands (dashed line) are shown.

matrix elements (18). In Fig. 3 we consider the diagonalization in the subspace of

3 spin degenerate bands. It is apparent that already at this level the corrections to the

level energies and wave-functions are important for the second sub-band. For example,

it is very close to the correct behavior at kx = 0. Considering l sub-bands for the

diagonalization, one is able to get a reliable behavior starting from sub-band 1 to l− 1.

4. Ballistic Transport

In this section the issue is to study the quantum transport properties within the ballistic

regime. The standard Landauer-Büttiker formalism will be employed. We will start

considering a wire divided in two different regions: one with SOI and one without.

Then we take the case of a quantum wire with a finite SOI region into account. The

results are obtained within the approximation of the two-band model and those results

will be compared with a numerical tight-binding method.

4.1. Single interface

We consider a QW divided in two main regions: in the right region (x > 0) SOI is present

while in the left region (x < 0) it is not. The interface separating the two regions is

considered to be sharp and is described by a δ-like potential. The Hamiltonian of this

hybrid system reads

Hhyb = ~p
1

2m(x)
~p+ V (z) +

~kSO(x)

mSO
(σzpx − σxpz)

− iσz
~

2mSO

∂kSO(x)

∂x
+

~
2u

2m(x)
δ(x). (33)
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We assume that the mass and the strength of the SOI are piecewise constant with

kSO(x) = kSOθ(x). For simplicity the mass is considered equal on both sides of the

interface. The fourth term is necessary to getHhyb hermitian. At the interface the spinor

eigenstates of Hhyb have to be continuous, whereas their derivatives have a discontinuity

u− iσzkSO due to the SOI and to the δ-like potential in x = 0:

ψ(0+) = ψ(0−) , (34a)

∂ψ(x)

∂x

∣

∣

∣

∣

x=0+
−
∂ψ(x)

∂x

∣

∣

∣

∣

x=0−
= (u− iσzkSO)ψ(0). (34b)

In order to study the effects of the sub-band hybridization on the transport

properties, we start considering the injection of carriers only within the first sub-band.

This can be achieved requiring that the second sub-band is behaving as an evanescent

wave. In this context the Eqs. (34a-34b) are reduced to a set of two decoupled systems

of four times four equations for the variables r1+, t1+, r2−, t2− and r1−, t1−, r2+,

t2+ respectively, where t1(2),+(−) and r1(2),+(−) are the transmission and the reflection

amplitudes in the first (second) sub-band with spinor + (−) respectively. The knowledge

of the transmission and reflection amplitudes permits to evaluate the probability current

and, as a consequence, the transmission probabilities for spin-up and spin-down carriers.

Due to the presence of SOI only for x > 0, the probability current has two different

forms given by

~j =
1

m

{

ℜ
{

ψ†~pψ
}

for x < 0

ℜ
{

ψ† [~p + ~kSO (ŷ × ~σ)]ψ
}

for x > 0
(35)

where ψ is the wave function solution of the system of Eqs. (34a-34b). A direct evaluation

of the transmission probabilities [20] results in the following expressions:

T↑ =
|t1+|

2

kin
[k1+(kin) + kSO〈σz〉1+] , (36a)

T↓ =
|t1−|

2

kin
[k1−(kin) + kSO〈σz〉1−] , (36b)

where kin is the injection momentum and k1+(kin) and k1−(kin) are the momentum

relative to kin for the two spin resolved sub-bands. The factors 〈σz〉1+ and 〈σz〉1− are

the expectation values of σz on the two spin resolved sub-band wave functions and are

defined as

〈σz〉1± = ±
1− f1(±k1±)

2

1 + f1(±k1±)2
(37)

where the function f1 has been provided with Eq. (29). Because of the absence of

SOI for x < 0 the reflection probabilities are simply defined as R↑ = |r1+|
2 and

R↓ = |r1−|
2. The system Hamiltonian Hhyb is invariant under time-reversal symmetry

and, as consequence, the following relations hold: R↑ = R↓ and T↑ = T↓. This means

that spin-up and spin-down carriers are transmitted through the interface in the same

way.
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Figure 4. Polarization (40) as a function of the injection energy for k̄SO = 0 (dotted

line), k̄SO = 1 (solid line), k̄SO = 2 (dashed line) and k̄SO = 3 (dotted-dashed line).

We consider the injection of a spin-unpolarized mixture of carriers with injection

momentum kin. In terms of density matrix we have

ρin =
1

2
| ↑ 〉〈 ↑ |+

1

2
| ↓ 〉〈 ↓ | (38)

with the property that 〈σz〉in = Tr{ρinσz} = 0. The density matrix of the transmitted

carriers is expressed by the relation

ρout =
T↑

T↑ + T↓
|1+〉〈1 + |+

T↓
T↑ + T↓

|1−〉〈1− |

=
1

2
|1+〉〈1 + |+

1

2
|1−〉〈1− | (39)

where |1±〉 are the wave functions of the spin resolved sub-bands. We can now evaluate

the polarization of the output carriers, this is expressed by

〈σz〉out =
1

2
〈σz〉1+ +

1

2
〈σz〉1−

=
1

2

(

1− f1(k1+)
2

1 + f1(k1+)2
−

1− f1(−k1−)
2

1 + f1(−k1−)2

)

. (40)

Figure (4) shows the polarization (40) as a function of the injection energy for various

values of the SOI. The injection energy is limited within the first two spin-resolved

sub-bands. It is clear that when SOI is zero (dotted line) there is no polarization, but

as soon as the SOI is different from zero, the polarization gets a finite value, which

increases as a function of SOI for a fixed energy. Those results are in accordance with

Governale and Zülicke [14], who showed a negative polarization for carriers in the first

two spin-resolved sub-bands and positive injection energies.

4.2. Wire with finite SOI region

We consider a QW composed of three parts: two external regions (x < 0 and x > L)

without SOI, and a central one (0 < x < L) where SOI is present. We consider the
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hybrid system Hamiltonian of Eq. (33), with kSO(x) = kSOθ(x)θ(L − x) and two δ-like

potentials of x = 0 and x = L. Also in this case, for simplicity, the mass is assumed

constant along the wire. As for the single interface case, the spinor eigenstates of Hhyb

are continuous at the interfaces, whereas their derivatives have discontinuities in x = 0

and x = L:

ψ(0+) = ψ(0−) , (41a)

∂ψ(x)

∂x

∣

∣

∣

∣

x=0+
−
∂ψ(x)

∂x

∣

∣

∣

∣

x=0−
= (u− iσzkSO)ψ(0) , (41b)

ψ(L+) = ψ(L−) , (41c)

∂ψ(x)

∂x

∣

∣

∣

∣

x=L+

−
∂ψ(x)

∂x

∣

∣

∣

∣

x=L−

= (u+ iσzkSO)ψ(L). (41d)

As first step, we consider carriers with injection energy within the first two spin-resolved

sub-bands and with evanescent waves for the following two. The Eqs. (41a-41d) reduce

to a set of two decoupled system of equations, with relevant terms tR1+, tR1−, rL1+ and

rL1−. Those are practical for evaluating the transmission and the reflection probabilities

for spin-up and spin-down carriers. As expected, because of the absence of SOI in the

external regions we get

T↑ = |tR1+|
2 , T↓ = |tR1−|

2 , (42a)

R↑ = |rL1+|
2 , R↓ = |rL1−|

2. (42b)

Due to time-reversal symmetry, it results that the value of the transmission probability

T↑ for spin-up incoming carriers is equal to T↓ for incoming spin-down carriers. It is

relevant to study transport properties when an unpolarized mixture of spin-up and

spin-down carriers is injected into the system. The incoming and the outgoing density

matrices are described by the expressions (38) and (39) respectively, where now the

states |1±〉 are the output wave functions in the second region without SOI. As in the

previous section we can evaluate the polarization as the average value of the σz operator

and obtain as result

〈σz〉out = T↑ − T↓ = 0. (43)

The effect of spin polarization due to the first interface is completely cancelled by the

second one, therefore it is not possible to observe any spin polarization [14]. This result

can be also derived by a symmetry consideration: let us consider the scattering matrix

SQW of the QW. In absence of a magnetic field time-reversal symmetry is preserved,

therefore, as a consequence, for SQW holds the following important relation:

SQW = ΣyS
†
QWΣy (44)

where Σy =

(

σy 02
02 σy

)

. It is clear for Eq. (44) that in the case of only one

conducting channel the spin-flip transmission terms must be zero and as consequence

the polarization is absent [15].
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Figure 5. (Left Panel) Spin resolved transmissions as a function of the injection

energy and for two different values of the transparency of the barriers: u = 1.0 (solid

lines) and u = 0.1 (dashed lines). The dotted line indicates the opening of the sub-

bands in absence of SOI. The dimensionless SOI is k̄SO = 1.4 and the central region

is L = 3W . (Right Panel) Spin polarization 〈σz〉 as a function of the injection energy

and for two different value of the δ-barrier transparency. The same parameters as in

the left panel are used.

As a further step, we study the transport properties when carriers are injected also

within the second two spin-resolved sub-bands. In this limit all the evanescent modes

are transformed in conducting ones. Using Eqs. (38) and (39) for the incoming and the

out-coming density matrix, the polarization is expressed by

〈σz〉out =
1

2

(

T1+(0) + T2+(0)− T1−(0)− T2−(0)

T1+(0) + T2+(0) + T1−(0) + T2−(0)
+

+
T1+(π/2) + T2+(π/2)− T1−(π/2)− T2−(π/2)

T1+(π/2) + T2+(π/2) + T1−(π/2) + T2−(π/2)

)

, (45)

where “0” and “π/2” denote incoming up- and down-carriers respectively.

In Fig. 5 (left panel) we show the spin resolved transmissions as a function of the

injection energy below and above the bottom of the second two sub-bands and for two

values of the transparency u of the interfaces (strength of the δ-function potential in

Eq. 33). The behavior below the threshold clearly shows Fabry-Perot oscillations due

to multiple reflection effects within the central region, moreover the strength of those

oscillations is decreasing for increasing transparency of the two δ-barriers. A second

important feature of the behavior is that up to the threshold, owing to the time-reversal

symmetry, the two spin resolved components possess the same value. When the injection

energy is crossing the bottom of the second two sub-bands, a new behavior appears. The

two spin resolved transmissions take different values, the difference between those two

is bigger near to the sub-band threshold and is decreasing with increasing energy. This

can be well understood if we relate this phenomenon to the sub-band hybridization.

As shown in Figs. 2 and 3 the SOI strongly modifies the parabolic-like behavior of the

spin resolved sub-bands when new sub-bands are opening and this effect is vanishing at

higher energies. In contrast to the results of Governale and Zülicke [14], Fig. 5 clearly

shows how polarization effects can manifest themselves when also the second two spin-

resolved sub-bands are involved into the transmission mechanism. This is more clear
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Figure 6. (Left Panel) Numerical spin resolved transmissions as a function of

the injection energy and for two different values of the switching region of SOI:

LsrW
−1 ∼ 0.07 (solid lines) and LsrW

−1 ∼ 0.7 (dashed lines). The dotted line

indicates the opening of the sub-bands in absence of SOI. The dimensionless SOI

is k̄SO = 1.4 and the central region is L = 3W + 2Lsr. In the insets a) and b) are

shown the magnification for the steps relative to the opening of the second and the

third sub-band, respectively. (Right Panel) Spin polarization 〈σz〉 as a function of the

injection of energy and for the two different values of LsrW
−1. The same parameters

as in the left panel are used.

in Fig. 5 (right panel), where the polarization as a function of the injection energy is

shown. The polarization is zero below the bottom of the second two sub-bands and

has oscillating behavior above it. This particular shape of the polarization can be

understood also in terms of formation of spin-dependent bound states at energies closer

to the opening of the second two sub-bands. Those bound-state oscillations are clearly

visible in the polarization pattern and it is evident how they are enhanced when the

δ-barrier transparency is decreased.

The effects on spin transport due to higher sub-bands can be numerically verified.

For this purpose we employ a tight-binding model of the Hamiltonian (1), the spin-

dependent scattering coefficients are obtained by projecting the corresponding spin-

dependent Green function of the open system onto an appropriate set of asymptotic

spinors defining incoming and outgoing channels. A real-space discretization of the

Schrödinger equation in combination with a recursive algorithm for the computation of

the corresponding Green function has been implemented [20]. This formalism allows

a convenient treatment of different geometries as well as different sources of scattering

within the same framework [21].

The δ-barriers are introduced in the tight-binding calculation dividing the central

region in three parts in order to modulate the switching region Lsr for the SOI. A long

switching region will correspond to a high transparency, and vice versa. In Fig. 6 (left

panel) we show the spin-resolved transmission as a function of the injection energy and

for two different lengths of the switching region. The system parameters are chosen in

order to have three active sub-bands in the case of injection within the highest energy
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Figure 7. Polarization as a function of the injection energy for the two-band (dashed

line) and the N -band (solid line) models, respectively. Panel a) first sub-band, Panel

b) second sub-band. For both the Panels N = 50.

allowed by the tight-binding approximation of the Hamiltonian (1). Injecting carriers

within the first two spin-resolved sub-bands reproduces the result coming from time-

reversal symmetry: spin-up and spin-down transmissions coincide. As soon as the second

two sub-bands are opened we can observe a difference in their values. This difference

tends to decrease for increasing energy but is, then, enhanced by the opening of the

third two sub-bands [22]. This is clear from Fig. 6 (right panel), where we show the

polarization as a function of the injection energy. Here it is also possible to observe how

the strength of the polarization oscillations in strongly reduced changing the length of

the switching region.

The polarizations at the opening of the second two spin-resolved sub-bands in the

case of the two-band model (Fig. 5) and for the numerical tight-binding method (Fig. 6)

show an opposite value. This can be well understood if we consider the polarization

within the first and the second sub-band for an infinite long wire in the two-band and

in the N -band models, respectively. In Fig. 7 we show the polarization for the first

sub-band (upper Panel), it is evident that there is a small deviation of the two-band

model (dashed lines) from the N -band model. But this deviation is stronger for the

second sub-band (lower Panel) resulting in completely opposite value at large energies.

This well reveals how the two-band model can only qualitatively reproduce the exact

calculation, but is failing in the quantitative estimation.

5. Conclusions

We have studied the properties of a QW in the presence of Rashba SOI. The spectral

properties have been investigated both from the point of view of the exact wave

functions and within the second-order perturbation theory approach. Furthermore, a

numerical diagonalization procedure has been implemented in order to study the spectral

properties for the system in presence of N sub-bands. We have used this last method
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with two sub-bands within the so called two-band model. We have shown that this is a

good description for the full properties of the first sub-band but not of the second one.

This model has also been used in order to study the transport properties of a system with

an interface between a region with and without SOI. We have shown that the interface

is spin selective and that the crossing of unpolarized carriers through the interface can

give rise to a non-zero polarization. We have studied spin transport also injecting

carriers within the first and the second sub-band. We have shown that at the opening

of each new channel the sub-band hybridization can give rise to spin selective bound

states reflecting in a oscillating spin polarization. Those results have been confirmed by

numerical calculation obtained within the tight-binding approximation.
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