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Abstract. The effect of Rashba spin-orbit interaction in quantum wires with hard-
wall boundaries is discussed. The exact wave function and eigenvalue equation are
worked out pointing out the mixing between the spin and spatial parts. The spectral
properties are also studied within the perturbation theory with respect to the strength
of the spin-orbit interaction and diagonalization procedure. A comparison is done
with the results of a simple model, the two-band model, that takes account only of the
first two sub-bands of the wire. Finally, the transport properties within the ballistic
regime are analytically calculated for the two-band model and through a tight-binding
Green function for the entire system. Single and double interfaces separating regions
with different strengths of spin-orbit interaction are analyzed injecting carriers into
the first and the second sub-band. It is shown that in the case of a single interface the
spin polarization in the Rashba region is different from zero, and in the case of two
interfaces the spin polarization shows oscillations due to spin selective bound states.
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1. Introduction

The Spintronics [1] is one of the most prominent fields of modern condensed matter
physics. Its target is to use spin to create electrical and optoelectronic devices with new
functionalities [2]. Up to now, starting form the seminal device by Datta and Das [3],
several devices based on the giant and tunnel magnetoresistance have been realized for
read-head sensors and magnetic random-access memories [2]. The important task of
the integration of such spintronics technologies with the classical semiconductor devices
finds an obstacle in the small spin injection from magnetic to semiconductor materials
due to the large resistivity mismatch between magnetic and semiconductor materials [4].
For this reason it is useful to design semiconductor devices with an efficient all-electrical
spin-injection and detection via Ohmic contacts at the Fermi energy, as it has been
already realized for metallic devices [5, 6].

Two important classes of spin-orbit interaction (SOI) are relevant for semiconductor
spintronics: the Dresselhaus type [7] and the Rashba type [8] coupling. The former
arises from the lack of symmetry in the bulk inversion whereas the latter arises
from the asymmetry along the growing-direction-axis of the confining quantum well
electric potential that creates a two-dimensional electron gas (2DEG) on a narrow-
gap semiconductor surface. Since the Rashba SOI can be tuned by an external gate
electrode [9, 10, 11] it is envisaged as a tool to control the precession of the electron
spin in the Datta-Das proposal for a field-effect spin transistor [3].

Quasi-one-dimensional electron gases or quantum wires (QWs) are realized by
applying split gates on top of a 2DEG in a semiconductor heterostructure [12]. The
main effect owing to the confining potential is quantization of the electron motion
in the direction orthogonal to the wire axis. The combination of this confining
potential and the Rashba SOI gives rise to sub-band hybridization that can affect the
working principle of the field-effect spin transistor. Mireles and Kirczenow [13] have
numerically studied this effect and they have shown that a large value of the Rashba
SOI can produce dramatic changes in the transport properties of the device till to
suppress the expected spin modulation. The effect of sub-band hybridization has been
investigated by Governale and Ziielike [14] in a QW with parabolic confinement. They
show that electrons with large wave vectors in the lowest spin-spit sub-bands have
essentially parallel spin. But in proximity of the anti-crossing points due to the sub-
band hybridization it is no more appropriate to use the spin quantum number in order
to characterize the electron state in the QW. Furthermore, they show that it is not
possible to transfer the finite spin polarization of the QW to some external leads.

In this Article we study the spectral and the transport properties of a QW in
the presence of SOI. The main result of this Article is to show how to achieve non-
zero spin polarization in external leads using spin unpolarized injected carriers. This
can be obtained by injecting carriers in all the active sub-bands due to the quantum
confinement. At the opening of each new sub-band the hybridization owing to SOI gives
rise to spin selective bound states reflecting in a oscillating spin polarization. Here, we
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want to stress that those spin polarized bound states are not in contradiction with any
fundamental symmetry property of the system [15].

This Article is organized in the following way: in Sec. 2 we evaluate the spectral
properties using the wave function approach [16, 17, 18]. In Sec. 3 we provide an
exact calculation for the spectral properties investigated within the perturbation theory
approach and with the exact diagonalization in a truncated Hilbert space. Here we also
introduce a minimal model featuring the basic characteristic of a QW with SOI named
two-band model. This is used in Sec. 4 in order to study the transport properties of a
QW in presence of a single interface between a region with and without SOI and in the
case of a double interface (spin-field effect transistor scheme). Conclusions are ending
the Article.

2. Exact solution of Rashba quantum wire: wave-function

Let us consider a 2DEG filling the plane (z,z). The charge carriers have momentum
P = (ps,p.) and effective mass m. The particles are confined along the z-direction
by the potential V(z) and subjected to the Rashba spin-orbit interaction (SOI). The
single-particle Hamiltonian reads

1
H =5 (0o +p2) + V() + Hr, (1)
where Hg is the Rashba SOI
hk
HR = 20 (Usz - prz) . (2)

In Eq.(2) 0, and o, are the = and z components, respectively, of the vector & of Pauli
matrices, and kgo is the SOI constant. This can be tuned by means of external gates
perpendicular to the 2DEG [9, 10, 11].

In the following we assume that the potential V' (z) provides a confinement with hard
walls at 2 = 0 and z = W. The strategy to find the wave-function of the Hamiltonian
(1) is similar to the procedure followed in the absence of SOI: one exactly solves the
2D problem, then considers the quantizing effect of confinement on the wave function
W (x, z). In the first subsection we shortly recall the spin-dependent solution of the 2DEG
with SOI, then we impose the boundary conditions ¥ (z,z =0) = ¥(x,z = W) =0. In
the presence of SOI, these relations mix the z part of the wave-function with its spinor
component.

2.1. Solution without confinement

Without confinement both components of the momentum p = hk are conserved. The
eigenfunctions of the Hamiltonian (1) in the absence of confining potential V' (z) = 0 are
denoted by the two spin modes (4) and (—) and read

B , cos(0/2)
¢E,+ (ZIZ’, Z) - eXp [l(kﬂﬁx + k‘ZZ)] ( _ Sln(9/2) ) ’ (3@)
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Figure 1. (Left Panel) Spectrum of the two-dimensional electron gas in the presence
of SOl interaction as a function of the wave-vectors k, and k,. At fixed positive energy,
the wave-vectors of the mode (+) and (—) are on two concentric circles (radius for (—)
mode larger than that for the (+) mode).(Right Panel) At fixed positive energy and x
component of the wave-vector, the 4 possible values of the z component are shown.

G (2,2) = explilkys + k.2) ( :;EZ;?) ) , (30)

whose corresponding eigenvalues are given by
h2
Ey = — (K +£2kk 4
== 5 ( SO) ) (4)

where k = \/k2 + k2 is the modulus of the wave-vector in z-z plane, k, = kcos(f),
k. = ksin(0), with 6 the angle formed between the vector k and the z axis. It is clear
for Eqs. (3a,3b) that the spinors x+ of the two modes are orthogonal to each other.
We remind that the Rashba SOI can be viewed as a magnetic field parallel to the (z, z)
plane and orthogonal to the wave-vector k. The net effect is to orientate the spin along
the direction perpendicular to the wave-vector [16].

In order to determine the solution with confinement, it is essential to find the
eigenfunctions in the free case when the total energy E and the momentum along k, are
fixed (See Fig. 1). Fixing the total energy E , we note that there are two values of total
momentum k, corresponding to the different modes, fulfilling the Eq. (4) expressed as
a linear combination of those four waves:

2m
ki == ﬁE + k%o :F kSO. (5)
The propagation directions for the ki modes are fixed by the momentum k.. For
E > 0, the mode (+) is characterized by the propagation direction +a = arccos(k,/k)
fixing the value of k, = 4k, sin(«), whereas the mode (—) has propagation direction

+5 = arccos(k,/p_) and k, = +k_sin(f8). Therefore, the generic wave function



Rashba quantum wire: exact solution and ballistic transport )

Yp g, (x, 2) is given by
U (8,2) = 7 [Ap{(2) + BU{(2) + Cuf () + DY(=)] . (6)

with
i) = e (1 el ), 7
Yy () = e < AR ) , ®)
and /=1, 2.

For —k_ <k, < —ky or ky < k, < k_, the wave-function (6) is still valid. However,
one has a = ia, implying that cos(a) = cosh(a) and sin(a) = isinh(a), therefore the
(4+) mode becomes an evanescent one. Moreover, if k, > k_ or k, < —k_, then § = ib
and also the (—) mode changes into an evanescent one.

For E < 0 the 4 values of k, are only relative to modes (—). A wave-function similar
to (6) can be written. Also in this case the Fermi surface is formed by two circles but
now they correspond to the same energy F_. However, in the next section, we will see
that, from weak to intermediate values of the Rashba SO coupling, only positive values
of the energy are important due to the effect of the confinement.

2.2. Solution with confinement

The wave-function (6) represents the starting point for taking account of the
confinement. In fact, the hard wall boundary conditions are obtained by imposing
that the wave-function is zero on the borders (z = 0 and z = W): ¢y (z,2 = 0) =
Ypg,(x,z=W) =0. For E > 0, we get the following exact eigenvalue equation for the
Rashba quantum wire

1 — cos|k W sin(«a)] cos[k_W sin(5)] +

1 + cos(a) cos(B)]
sin(«) sin(3)

Therefore, via the SOI, the quantities k, and k_, and clearly the energy, are related to

sin[k; W sin(a)] sin[k_ W sin(ﬁ)][ = 0. 9)

the spinor components of the wave-function. A similar equation is valid for E < 0.
In the absence of SOI, the quantized energy levels are independent of spin behavior.
Actually, one gets ky = \/2mE /h? and o = 3. This yields

2mb
72
with n being a positive integer number, so that, together with the relation cos(a) =

W sin(«) = nm, (10)

k. /k+, we obtain

h2 2 2
E, = (”WZ +k§), (11)

2m

which are the energy values for the sub-bands of the quantum wire without SOI.
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In the presence of SOI, an important limit is obtained for k, = 0. Indeed the
eigenvalue equation becomes

cos[(ky + k)W) =1, (12)
implying that
h? [ nin?

Therefore, all the sub-bands are shifted down by the SOI term k2,. For values of the
SOI such that kso < 7/W, the energies are positives and the wave function (6) holds
true. This means that the spin-precession length Lgo = 7/kso has to be larger than
the wire width.

3. Two-band model and perturbation theory

In the previous section we started from the wave-function of the 2D model with SOI, and
then imposed the conditions due to confinement. Now, we consider the opposite point of
view. First we take into account the exact solution of the quantum wire in the absence
of the SOI, then we study its effect on the sub-bands. Because of SOI, a coupling
between sub-bands with opposite spins occurs. In order to study the effects of this
coupling, in the first subsection we will discuss the results within the first- and second-
order perturbation theory approach with respect to the SOI. In the second subsection
we consider the two-band model, where only the first two bands of the unperturbed
spectrum are assumed to be coupled by the interaction. This assumption is valid if the
wire is very narrow. Moreover, this simple system is studied since it provides a simple
understanding of the transport properties. Finally, in the third subsection, we will show
the results of the exact diagonalization of the model.

The Hamiltonian (1) is considered to be split into two terms: Hy and Hgr. The
term Hg is simply the Hamiltonian of the wire without SOI:

Ho= 5 (02 +77) +V(2) (14
where V' (z) is the hard-wall confining potential. Due to the presence of the potential
V(z), only the momentum p, = hk, is conserved. We find the matrix elements of H
in the basis of H indicated by |k;, n,o), with n index of the sub-band and o = +1
for up or down spin, respectively. The SOI term contains terms o,p, and —o,p.. For
¢ = n, only the former term of Hpy is acting on the unperturbed states with the same
spin state, so that the matrix elements are

W ksoks
(ks 0,0 Hrlks,n,0") = =2 '8, 0, (15)

while, for ¢ # n, the latter term Hg couples sub-bands with opposite spin and parity,
so that the matrix elements are

<km7€70‘HR|kx7n70—/> = Jf,néo,—cr’v (16)



Rashba quantum wire: exact solution and ballistic transport 7

with Jy, independent of the wave-vector k,

ihzkso 20n ‘—n
Ton = mW 02 —n2 [ B (_1)| q ’

(17)

If we express the energies in the unit h?/2mW?, the lengths in W and the wave-vectors
in 1/W, we recast the following matrix elements for the entire Hamiltonian H:

<k:ca €> U|H|kx> n, OJ> = [ETS,O)(EZ') + QESOE:L‘OJ] 5Z,n50,0’ +
J_Z,n[l - 5Z,n]50,—0’7 (18)

where k, = kW, Eflo)(]%m) = k2 + n?r? kso = ksoW, and J,,, proportional to the

dimensionless SOI term kso
40n

2 _ 2

[1— (=1l (19)

Jon = ikso

3.1. Perturbation theory

The correction to the unperturbed energies E,SO) within the first-order perturbation
theory is simply derived considering only the diagonal terms of Eq.(18). Therefore,
at first-order, the n-th sub-band is simply affected by the spin slitting due to the
contribution o.p, of Hgso:

EW (k) = EQ(k,) + 2ksok.o, 20)

and eigenvectors equal to those of the unperturbed system. This splitting controlled by
SOI gives rise to a first-order spectrum with crossings between sub-bands with opposite
spins. For example, the first and second sub-band intersect at k, = +£372/4kso and
the others for larger values of k,. This suggests that the full effect of the interaction
should remove this crossing by mixing the behavior of coupled sub-bands. Due to the
presence of those level crossings, the correction to the energy levels within the second-
order perturbation theory fails for values of k, close to intersections. Far from the
crossing points, it is easy to derive the contribution in the second-order to the energy

_ Jonl? _
2 = Z Z % = —ko, (21)
U(#n) o' (o)

a quantity independent of k,, n and o. This result is indubitably valid for k, = 0.
Indeed, it coincides with the result (13) obtained in the previous section by using the
exact wave-function. This shows that at k, = 0 the energy correction within the second-
order perturbation theory is able to fully describe the energy spectrum. Also, the
correction of the wave-function at first-order can be evaluated. If at zero-order the spin
is o, at first-order one takes contribution from —o:

w0 =50 2 15, - s0ute - o), (22)

472

with

Sl,n(z) — @ <e—2i7rz/L’ 27 _Tn) ) <€—2i7rz/L7 2’ g) ’ (23)
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and

Sz,n(Z) — & <e2i7rz/L7 2’ _Tn) ) <e2i7rz/L7 2’ g) ’ (24)

where ®(z,s,a) = > p—,2"/(a+ k)* is the Lerch transcendent function [19)].

3.2. Two-band model

In order to investigate the effects of the coupling between sub-bands induced by SOI, it
is convenient to analyze the two-band model that will be also considered in the section
devoted to transport properties. This model takes only the first and the second sub-
band of the unperturbed wire into account . The 4 x 4 problem can be decoupled
into two 2 x 2 problems. The only thing to evaluate is J; o = —i16kgo/3. One gets 4
eigenvalues [13, 14]:

61—1—(];&) = 7 + ki - gl(];;m)a 61—(]%90) = 61—1—(_]%90)7 (25)
rlhe) = 2+ B = ol () = a4 (1), (26)

with

_ 1 _ 1024 k2 _ _
g1(kz) = 5\/(37T2 — 4kyks0)? + Tsoj Ga(ks) = g1(—Fkz). (27)

The eigenvectors can also be calculated. For example, the eigenvector corresponding to

€14+ is
1, 2) = eke” 2 1 éin (%) ) 28
o= i )
with fi (l;:x) given by
- 3 32 - -
fi(ke) = o [—% + 2ksoky + gl(/{ix)} . (29)

As shown in Fig. 2, the eigenvalues (solid lines) do not show any intersection for
k, different from zero. Therefore, the inter-band coupling removes the crossings of the
first-order perturbation theory solution (dashed line). As a result, the energy eigenstates
are no longer eigenstates of o, [14] and the spin state depends on the wave-vector k..
Close to the crossing point, the wave function of 1 1 and 2 |, for example, are strongly
mixed in the mode 1+. However, far from the intersection, the mode given by the
diagonalization preserves the original behavior of the component wave-functions. For
example, if we analyze the behavior of the eigenstate 11, (z, z), we get

 lm V14 (2, 2) = Piy(g, 2), Jm Y1z, 2) = Yoy (, 2). (30)

The behavior of the two-band model shows a general trend: only taking into account
the coupling between sub-bands the description is qualitatively correct. The crossing
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Figure 2. Energy levels of the two-band model (in units of h2/2mW?) as a function
of the dimensionless wave-vector k,W for the value ksoW = 7 of the dimensionless
spin-orbit parameter. The spectrum derived from the diagonalization of the two-band
system, indicated in figure by 1+, 1—, 2+, and 2— (solid lines), is compared with that
from first-order perturbation theory, indicated by 1 up, 1 down, 2 up, 2 down (dashed
lines).

are artifacts of the lowest-order perturbation theory. The spectrum within the two-
band model is reliable only for very narrow wires. In the general case, the low-energy
description given by this model is too poor for the bands 24+ and 2—. This can be easily
seen if one considers the energy values at k, = 0. In fact one gets for sub-bands 1+ and
2+, respectively, the achieved values are

521 1024k32
Eli:7—§\/9ﬂ'4+Tso, (31&)
5r2 1 \/ 1024k2
_ - 4 SO 1
€o+ —2 + 9 97t + 79 . (3 b)
In the limit of small kg, they become
256 - -
€14 = T2 — ﬁkgo ~ 1% — 0.961k3, (32a)
Cun? 20 p2 L un? 4006182 32b
Co = 4T T oo 5 hso = 4+ U901 5o (32)

From the comparison with the exact solution we find that the lowest sub-bands acquire
a correction with the right sign and very close to the exact result, while the upper sub-
bands have even the wrong sign. Therefore, in order to give a reasonable description of
the low-energy part of the spectrum, more bands are necessary. This will also play an
important role in the transport properties.

3.3. Ezact diagonalization

In order to verify the importance of including more than two sub-bands, one can directly
diagonalize the Hamiltonian of the system [14]. This can be done considering the
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Figure 3. Energy levels of the wire (in units of h%/2mW?) as a function of the
dimensionless wave-vector k,W for the value ksoW = 7 of the dimensionless spin-
orbit parameter. The spectra derived from the diagonalization of the system with 3
sub-bands (solid line) and 2 sub-bands (dashed line) are shown.

matrix elements (18). In Fig. 3 we consider the diagonalization in the subspace of
3 spin degenerate bands. It is apparent that already at this level the corrections to the
level energies and wave-functions are important for the second sub-band. For example,
it is very close to the correct behavior at k, = 0. Considering [ sub-bands for the
diagonalization, one is able to get a reliable behavior starting from sub-band 1 to [ — 1.

4. Ballistic Transport

In this section the issue is to study the quantum transport properties within the ballistic
regime. The standard Landauer-Biittiker formalism will be employed. We will start
considering a wire divided in two different regions: one with SOI and one without.
Then we take the case of a quantum wire with a finite SOI region into account. The
results are obtained within the approximation of the two-band model and those results
will be compared with a numerical tight-binding method.

4.1. Single interface

We consider a QW divided in two main regions: in the right region (x > 0) SOI is present
while in the left region (z < 0) it is not. The interface separating the two regions is
considered to be sharp and is described by a d-like potential. The Hamiltonian of this
hybrid system reads

—

o 1 5 hk‘so(!lf)
thb - me(x)p + V(Z) + mso (

h akso(l')+ h2u
2mso  Ox 2m(x)

OzPx — Umpz)

5(x). (33)

— 10,
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We assume that the mass and the strength of the SOI are piecewise constant with
kso(x) = ksof(x). For simplicity the mass is considered equal on both sides of the
interface. The fourth term is necessary to get Hypy, hermitian. At the interface the spinor
eigenstates of Hyyp, have to be continuous, whereas their derivatives have a discontinuity
u — 10, kso due to the SOI and to the d-like potential in x = 0:

$(07) = (07), (34a)
)OI iokso)u(0). (340)

In order to study the effects of the sub-band hybridization on the transport
properties, we start considering the injection of carriers only within the first sub-band.
This can be achieved requiring that the second sub-band is behaving as an evanescent
wave. In this context the Eqs. (34a-34b) are reduced to a set of two decoupled systems
of four times four equations for the variables ry., t;4, ro_, to and r_, t;_, roy,
to4 respectively, where t;9) 1(—) and ry9) () are the transmission and the reflection
amplitudes in the first (second) sub-band with spinor + (—) respectively. The knowledge
of the transmission and reflection amplitudes permits to evaluate the probability current
and, as a consequence, the transmission probabilities for spin-up and spin-down carriers.
Due to the presence of SOI only for = > 0, the probability current has two different
forms given by

j:i{ %{Mﬁlp} forz <0

m | R{YT [P+ hkso (§ x )¢} for x>0 (35)

where 1) is the wave function solution of the system of Eqs. (34a-34b). A direct evaluation
of the transmission probabilities [20] results in the following expressions:

t 2

7y = P e () 4 ksotoana) (360)
t_ 2

T¢ = | ]2 | [k‘l_(k’in) + k‘so<0’z>1_] , (36b)

where kj, is the injection momentum and ki (ki) and ki (ki) are the momentum
relative to k;, for the two spin resolved sub-bands. The factors (0,)1; and (0,);_ are
the expectation values of o, on the two spin resolved sub-band wave functions and are
defined as

1 — fi(£kis)?
1+ fi(Ehkie)?

where the function f; has been provided with Eq. (29). Because of the absence of

<Uz>1:t = :l: (37)

SOI for & < 0 the reflection probabilities are simply defined as Ry = |ri4|* and
Ry = |ri_|?. The system Hamiltonian Hyy, is invariant under time-reversal symmetry
and, as consequence, the following relations hold: Ry = R and T} = 7. This means
that spin-up and spin-down carriers are transmitted through the interface in the same
way.
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Figure 4. Polarization (40) as a function of the injection energy for kso = 0 (dotted
line), kso = 1 (solid line), kso = 2 (dashed line) and kso = 3 (dotted-dashed line).

We consider the injection of a spin-unpolarized mixture of carriers with injection
momentum k;,. In terms of density matrix we have

o = DU+ 51100 (38)

with the property that (o,)in = Tr{po.} = 0. The density matrix of the transmitted
carriers is expressed by the relation

T T,
out = 1)1+ |+ 1-)(1 —
pon = g IR L+ g 1)1

= SN [+ 5l (39)

where |1+£) are the wave functions of the spin resolved sub-bands. We can now evaluate
the polarization of the output carriers, this is expressed by
1 1
<Uz>0ut = §<az>1+ + §<az>1—
:1 (1_f1(k1+)2 _ 1_f1(_k1—)2) (40)
2\ 1+ filki4)? 14 fi(—ki2)?)

Figure (4) shows the polarization (40) as a function of the injection energy for various

values of the SOI. The injection energy is limited within the first two spin-resolved
sub-bands. It is clear that when SOI is zero (dotted line) there is no polarization, but
as soon as the SOI is different from zero, the polarization gets a finite value, which
increases as a function of SOI for a fixed energy. Those results are in accordance with
Governale and Ziilicke [14], who showed a negative polarization for carriers in the first
two spin-resolved sub-bands and positive injection energies.

4.2. Wire with finite SOI region

We consider a QW composed of three parts: two external regions (z < 0 and z > L)
without SOI, and a central one (0 < z < L) where SOI is present. We consider the
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hybrid system Hamiltonian of Eq. (33), with kso(z) = ksof(z)0(L — x) and two d-like
potentials of x = 0 and x = L. Also in this case, for simplicity, the mass is assumed
constant along the wire. As for the single interface case, the spinor eigenstates of Hyy,

are continuous at the interfaces, whereas their derivatives have discontinuities in z = 0
and z = L:

azg;x) - 8?5:) = (u — i02kso)(0) (41b)
w(L+) = ¢(L_) ’ (416)
&g;x) - &gf) = (u+i0:kso)y(L). (41d)

As first step, we consider carriers with injection energy within the first two spin-resolved
sub-bands and with evanescent waves for the following two. The Eqs. (41a-41d) reduce
to a set of two decoupled system of equations, with relevant terms tgiy, tr1_, rL14 and
rp1—. Those are practical for evaluating the transmission and the reflection probabilities
for spin-up and spin-down carriers. As expected, because of the absence of SOI in the
external regions we get

Ty = ltray [, Ty = [tra-|?, (42a)
RT = |’I“L1_|_|2 s R¢ = |7’L1_|2. (42b)

Due to time-reversal symmetry, it results that the value of the transmission probability
T for spin-up incoming carriers is equal to 7| for incoming spin-down carriers. It is
relevant to study transport properties when an unpolarized mixture of spin-up and
spin-down carriers is injected into the system. The incoming and the outgoing density
matrices are described by the expressions (38) and (39) respectively, where now the
states [14) are the output wave functions in the second region without SOIL. As in the
previous section we can evaluate the polarization as the average value of the o, operator
and obtain as result

<Uz>out == TT - T¢ = 0. (43)

The effect of spin polarization due to the first interface is completely cancelled by the
second one, therefore it is not possible to observe any spin polarization [14]. This result
can be also derived by a symmetry consideration: let us consider the scattering matrix
Sqw of the QW. In absence of a magnetic field time-reversal symmetry is preserved,
therefore, as a consequence, for Sqw holds the following important relation:

Sqw = ZyS(gWZy (44)

Oy 02

where X, = 0
2 Oy

It is clear for Eq. (44) that in the case of only one

conducting channel the spin-flip transmission terms must be zero and as consequence
the polarization is absent [15].
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Figure 5. (Left Panel) Spin resolved transmissions as a function of the injection
energy and for two different values of the transparency of the barriers: u = 1.0 (solid
lines) and u = 0.1 (dashed lines). The dotted line indicates the opening of the sub-
bands in absence of SOI. The dimensionless SOI is kso = 1.4 and the central region
is L = 3W. (Right Panel) Spin polarization (o) as a function of the injection energy
and for two different value of the d-barrier transparency. The same parameters as in
the left panel are used.

As a further step, we study the transport properties when carriers are injected also
within the second two spin-resolved sub-bands. In this limit all the evanescent modes
are transformed in conducting ones. Using Egs. (38) and (39) for the incoming and the
out-coming density matrix, the polarization is expressed by
1 <T1+(0) + 154(0) — T3-(0) — T»_(0)

2 \T1+(0) + T54(0) + T1-(0 )+T2 (0)

Tiy(m/2) + Tor (m/2) = T2 (7/2) — 2—(7T/2)> (45)
Ty (n/2) + Ty (7/2)  Tr (272 T o (/) )
where “0” and “m/2” denote incoming up- and down-carriers respectively.

<Uz>out -

In Fig. 5 (left panel) we show the spin resolved transmissions as a function of the
injection energy below and above the bottom of the second two sub-bands and for two
values of the transparency u of the interfaces (strength of the d-function potential in
Eq. 33). The behavior below the threshold clearly shows Fabry-Perot oscillations due
to multiple reflection effects within the central region, moreover the strength of those
oscillations is decreasing for increasing transparency of the two d-barriers. A second
important feature of the behavior is that up to the threshold, owing to the time-reversal
symmetry, the two spin resolved components possess the same value. When the injection
energy is crossing the bottom of the second two sub-bands, a new behavior appears. The
two spin resolved transmissions take different values, the difference between those two
is bigger near to the sub-band threshold and is decreasing with increasing energy. This
can be well understood if we relate this phenomenon to the sub-band hybridization.
As shown in Figs. 2 and 3 the SOI strongly modifies the parabolic-like behavior of the
spin resolved sub-bands when new sub-bands are opening and this effect is vanishing at
higher energies. In contrast to the results of Governale and Ziilicke [14], Fig. 5 clearly
shows how polarization effects can manifest themselves when also the second two spin-
resolved sub-bands are involved into the transmission mechanism. This is more clear
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Figure 6. (Left Panel) Numerical spin resolved transmissions as a function of
the injection energy and for two different values of the switching region of SOI:
LeW=1 ~ 0.07 (solid lines) and LW ™1 ~ 0.7 (dashed lines). The dotted line
indicates the opening of the sub-bands in absence of SOI. The dimensionless SOI
is kso = 1.4 and the central region is L = 3W + 2L,.. In the insets a) and b) are
shown the magnification for the steps relative to the opening of the second and the
third sub-band, respectively. (Right Panel) Spin polarization (o,) as a function of the
injection of energy and for the two different values of Ly, W ~!. The same parameters
as in the left panel are used.

in Fig. 5 (right panel), where the polarization as a function of the injection energy is
shown. The polarization is zero below the bottom of the second two sub-bands and
has oscillating behavior above it. This particular shape of the polarization can be
understood also in terms of formation of spin-dependent bound states at energies closer
to the opening of the second two sub-bands. Those bound-state oscillations are clearly
visible in the polarization pattern and it is evident how they are enhanced when the
0-barrier transparency is decreased.

The effects on spin transport due to higher sub-bands can be numerically verified.
For this purpose we employ a tight-binding model of the Hamiltonian (1), the spin-
dependent scattering coefficients are obtained by projecting the corresponding spin-
dependent Green function of the open system onto an appropriate set of asymptotic
spinors defining incoming and outgoing channels. A real-space discretization of the
Schrodinger equation in combination with a recursive algorithm for the computation of
the corresponding Green function has been implemented [20]. This formalism allows
a convenient treatment of different geometries as well as different sources of scattering
within the same framework [21].

The d-barriers are introduced in the tight-binding calculation dividing the central
region in three parts in order to modulate the switching region L, for the SOI. A long
switching region will correspond to a high transparency, and vice versa. In Fig. 6 (left
panel) we show the spin-resolved transmission as a function of the injection energy and
for two different lengths of the switching region. The system parameters are chosen in
order to have three active sub-bands in the case of injection within the highest energy
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Figure 7. Polarization as a function of the injection energy for the two-band (dashed
line) and the N-band (solid line) models, respectively. Panel a) first sub-band, Panel
b) second sub-band. For both the Panels N = 50.

allowed by the tight-binding approximation of the Hamiltonian (1). Injecting carriers
within the first two spin-resolved sub-bands reproduces the result coming from time-
reversal symmetry: spin-up and spin-down transmissions coincide. As soon as the second
two sub-bands are opened we can observe a difference in their values. This difference
tends to decrease for increasing energy but is, then, enhanced by the opening of the
third two sub-bands [22]. This is clear from Fig. 6 (right panel), where we show the
polarization as a function of the injection energy. Here it is also possible to observe how
the strength of the polarization oscillations in strongly reduced changing the length of
the switching region.

The polarizations at the opening of the second two spin-resolved sub-bands in the
case of the two-band model (Fig. 5) and for the numerical tight-binding method (Fig. 6)
show an opposite value. This can be well understood if we consider the polarization
within the first and the second sub-band for an infinite long wire in the two-band and
in the N-band models, respectively. In Fig. 7 we show the polarization for the first
sub-band (upper Panel), it is evident that there is a small deviation of the two-band
model (dashed lines) from the N-band model. But this deviation is stronger for the
second sub-band (lower Panel) resulting in completely opposite value at large energies.
This well reveals how the two-band model can only qualitatively reproduce the exact
calculation, but is failing in the quantitative estimation.

5. Conclusions

We have studied the properties of a QW in the presence of Rashba SOI. The spectral
properties have been investigated both from the point of view of the exact wave
functions and within the second-order perturbation theory approach. Furthermore, a
numerical diagonalization procedure has been implemented in order to study the spectral
properties for the system in presence of N sub-bands. We have used this last method
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with two sub-bands within the so called two-band model. We have shown that this is a
good description for the full properties of the first sub-band but not of the second one.
This model has also been used in order to study the transport properties of a system with
an interface between a region with and without SOI. We have shown that the interface
is spin selective and that the crossing of unpolarized carriers through the interface can
give rise to a non-zero polarization. We have studied spin transport also injecting
carriers within the first and the second sub-band. We have shown that at the opening
of each new channel the sub-band hybridization can give rise to spin selective bound
states reflecting in a oscillating spin polarization. Those results have been confirmed by
numerical calculation obtained within the tight-binding approximation.
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