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[1] Three dimensional soil-root water transfer models require a fine soil and root
discretization in order to obtain accurate results. This goes along with a considerable
computational effort. One way of reducing the computational effort is the usage of grid
refinement techniques. With such techniques irregular grids are obtained that combine the
accuracy of a fine grid resolution with a considerable reduction in computational costs.
As a consequence of plant transpiration roots take up water and large soil water potential
gradients around roots are created. Especially in these regions a fine soil discretization
is needed. The root spatial distribution can therefore be used for refinement of the soil
grid, a priori. Simulations show that the accuracy is indeed maintained for a priori refined
grids but with reduced computational costs as compared to regular fine grids. Comparison
with a well recognized a posteriori error estimate strengthen these results.
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1. Introduction

[2] For a variety of environmental and agricultural pur-
poses, such as irrigation management or yield prediction
under water scarcity conditions, the understanding of root
water uptake processes is of importance. Model develop-
ment have lead to three-dimensional soil-root water flow
models that describe the relationship between water flow in
soil and the uptake of water by plant roots [Javaux et al.,
2008]. In such models the root structure is independently
coupled to the soil grid that is used for the numerical
solution of the soil water flow equation, i.e., the Richards
equation. Because of more accurate measurement techniques
[Pohlmeier et al., 2008] and improved root growth and root
architecture models [Pagès et al., 2004] more detailed root
architectures can be obtained. Furthermore, to acquire high
resolution soil water potentials and velocity profiles (for
solute transport) a fine soil discretization is needed [Schröder
et al., 2009]. As a consequence, computational costs increase
largely for estimation of the water potentials in the soil
domain enclosing detailed root structures. Grid refinement
techniques can be used to reduce computational costs by
increasing the spatial resolution at locations where high
gradients in soil water potential and pore water velocity
exist, and using a coarser discretization at other locations
[Mansell et al., 2002]. This effectively decreases the number
of elements used in the numerical grid but at the same time

keeps the high spatial resolution in parts of the domain
where gradients are large.
[3] A generally used method for grid refinement is the

a posteriori error estimate [Babuška and Rheinboldt, 1978].
In this method the error between exact and approximated
solution for the elements of the soil grid is calculated after
the linear system of equations is solved. If the error exceeds
a certain threshold value the element is refined. The a
posteriori error estimate is a dynamic approach where the
soil resolution increases (or decreases) over time. Dynamic
approaches could, e.g., be used for modeling root growth.
For two-dimensional soil grids with a two-dimensional root
growing system Wilderotter [2003] imposed such a scheme.
A second method for grid refinement is the usage of a priori
information. In root water uptake models, it is expected that,
due to transpiration, large soil water potential gradients will
occur around active roots. Therefore a finer soil discretiza-
tion in the vicinity of roots is required [see, e.g., Schröder et
al., 2008]. An a priori grid can be developed based on the
root architecture with finer elements near roots and coarser
elements further away. A priori refinement can either be
used in a static or dynamic way. A static grid is defined as a
grid that does not change over time and is acquired after
considering the total root structure. A dynamic grid is only
based on that part of the root structure that is active and
takes up water, and is time dependent.
[4] The problems that arise with refinement techniques

for coupled three-dimensional soil-root water flow models
are related to the size of the soil discretization. First, the
Richards equation is only valid for a soil discretization
larger than the representative elementary volume of the soil
texture [Bear, 1972]. Second, if very small soil elements are
used the volume of soil around a root is very small, such
that the ratio of the uptake rate to the volume of soil (i.e., the
sink term) becomes very large causing the system of equa-
tions to diverge. Therefore a theoretical and methodological
limit exists in the minimum dimension of a soil element.
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[5] In this paper we developed a grid refinement approach
based on a priori root information that can be used in either
a static or dynamic way. We first compared a regular fine
grid (reference grid) with three regular coarser grids and
three static refined grids based on a priori root information
in terms of accuracy and computational time for a given
soil-root scenario. Furthermore, the obtained static grids
using a priori information are compared and validated with
grids obtained by an a posteriori error estimate, that was
deduced for the three-dimensional water flow equation. In
order to compare both methods the a posteriori refinement
method is adapted to generate ‘‘static’’ grids. Finally, we
address the usage of dynamic a priori refinement techniques
for the presented three-dimensional soil-root water flow
model.

2. Methods

2.1. Three-Dimensional Macroscopic Water Flow
Model in Soil and Roots

[6] The model of Javaux et al. [2008] consists of two
interacting systems: the soil matrix and the root architecture.
The soil system is discretized into cubes that are again
divided into six linear tetrahedral elements of equal shape,
to be used for numerical interpolation of the Richards
equation. The root system is divided into nodes connected
by segments. For both systems a set of equations is solved
in terms of water potential and both are coupled via the
sink term S in the Richards equation, see the work of Javaux
et al. [2008] for more details. The boundary conditions for
the plant root system are a transpiration rate or a water
potential at the root collar, and a soil water potential at the
soil-root interface enabling calculation of the water poten-
tial within the roots. Stress is defined when the water
potential at the root collar is lower than a limiting water
potential value. From this point on the water potential is
kept constant at the root collar so that the simulated actual
transpiration rate becomes smaller than the potential tran-
spiration rate.
[7] Radial soil-root water flow Jr [cm

3 d�1] is given by

Jr ¼ Lr*Ar yint � yxylem

� �
ð1Þ

where L*r is the radial root conductivity [d�1], Ar [cm
2] the

root outer surface and y [cm] represents the water potential
expressed as hydraulic head at the soil-root interface (yint)
and in the xylem (yxylem) respectively. The outer root
surface is defined by Ar = 2printlr, with rint [cm] the root
radius and lr [cm] the length of the root segment. The water
potential at the soil-root interface is estimated by a distance-
based weighting function of the water potential in the
surrounding soil nodes. The sink term [d�1] of a soil cube
j is calculated by

Sj ¼
Pnj

k¼1 Jr;k
Vj

ð2Þ

where the nominator represents the sum of all the radial
soil-root fluxes of the nj root nodes located inside a soil
cube j and Vj [cm

3] is the volume of the jth soil cube. A
root node is defined as the center of a root segment at

which water exchange is allowed. The sink term is then
distributed upon the soil nodes i representing the bulk soil

Si ¼ Sjwi

yi�yintð Þ
distiP8

l¼1
yl�yintð Þ
distl

; for i ¼ 1; . . . ; 8

ð3Þ

where dist is the distance from the soil node i to the soil-
root interface and wi is a volume fraction that relates the
volume of soil belonging to soil node i with the volume of
the soil cube Vj.
[8] For each timestep of the simulation first the root

system is solved, after that the soil system and again the
root system in an iterative way. If the changes in both
systems are lower than imposed tolerance criteria, for water
content and water potential regarding the soil system and for
xylem water potential regarding the root system, the final
solution for this timestep is found and the simulation
continues with the next timestep.

2.2. A Priori Refinement

[9] The initial, regular coarse grid is divided into cubes
which are again divided into elements. The a priori refine-
ment technique is applied to the soil cubes not the elements.
Firstly, to enable the usage of equation (2). Secondly,
because of lower computational costs of routines that are
needed for equations (1) and (2) when using cubes instead
of elements. As the discretization size of a cube is limited a
multilevel refinement technique up to a minimal grid size is
employed. This technique is based on bisections of the
initial coarse grid, without additional coarsening. A two-
level refinement scheme is demonstrated in Figure 1 using
the known root information. Consider a root node positioned
randomly in a soil cube as given in Figure 1a. Then we
(1) bisect this cube in eight parts (Figure 1b), (2) identify the
subcube containing the root node, (3) bisect the identified
cube in additional eight cubes (Figure 1c).
[10] For a static grid this procedure is performed for all

root nodes in the given soil domain, for a dynamic grid only
a selection of root nodes is considered. After this procedure
a first refined grid based on the a priori root information is
gained.
[11] Due to the multilevel refinement smaller soil cubes

were generated with so-called slave nodes. Slave nodes are
soil nodes that are not connected to another soil node in all
available directions of the three-dimensional grid. Master
nodes, on the other hand, are connected in all possible
directions, i.e., in 6 directions if the soil node is not located
at the soil boundary domain. Slave nodes are located on
the six faces of a coarser soil cube bounding its subcubes
(crosses in Figure 1c). Two problems occur when using the
multilevel refinement technique. The first problem is related
to the allocation of a sink term to a soil node in the three-
dimensional model. In the case of regular grids (all master
nodes) each soil node has a predefined volume of soil
including nodes located at the soil boundary domain. This
volume of soil is used in equation (2) to estimate the sink
term obtained from the radial water flow of the root system.
Allocation of a soil volume to a slave node is rather
complicated, as the volume of soil is not necessarily equal
to the volume of the cubes the slave node belongs to. An
example is illustrated in Figure 1c. A slave node belongs in
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this example to two fine soil cubes, however, it has also
influence on the larger adjacent cube without being an
actual node of this cube. The grid is therefore extended
around the initial multilevel refined grid to transform a slave
node, that has been allocated a sink term, into a master
node. Hereto neighboring cubes, adjacent to the cube with
the slave node, with a refinement level larger than the
minimal refinement level are refined to this minimal level.
The second problem deals with the derivative of the solution
variable (water potential) at the interface between coarser
and finer cubes. After the initial multilevel refinement only
soil cubes with root nodes in it are refined. It may very well
occur that an unrefined coarser soil cube is located next to
a refined coarser cube (where the difference in level of
refinement is two or higher). In this case large jumps in the
derivative of the solution variable are expected. To predict a
smooth gradient throughout the soil the transition from
coarser cubes to finer cubes and vice versa is restricted to
a stepsize of one in the level of refinement.

2.3. Dynamic A Priori Refinement Based on Active
Root Segments

[12] A static a priori grid is gained if all root nodes are
considered for refinement of the soil grid. It would be ideal
for assuming that all root nodes take up water simulta-
neously. This is not the case in reality though, only part of
the root system is active [Passioura, 1980] as is shown by
simulations of Javaux et al. [2008] and Schröder et al.
[2009]. Thus the disadvantage of the static grid is that the
number of soil nodes is generally overestimated. Further-
more, the root system may grow and finer soil cubes may be
required. Therefore a dynamic approach is introduced.
Initially the simulation is started with a coarse grid. After
the root system is solved, only those root nodes with a radial
soil-root water flow are considered and refinement is
performed as in the previous section. Furthermore, a crite-
rion is introduced such that refinement is performed again if
this criterion is exceeded. For each timestep the difference
in radial soil-root water flow between the current timestep
and the one on which previous refinement was considered,
is calculated. However, only for those root nodes around
which the soil is not yet refined. If the sum of the absolute
differences is larger than 5% of the total absolute sum of the
radial soil-root water fluxes (at the current timestep) then
refinement is allowed. Refinement can be performed in

addition to the already existing grid. However, root water
uptake patterns may shift largely between soil layers [Li et
al., 2002; Schröder et al., 2008] and the refined grid may
have soil cubes that equal the minimum discretization size
but where no refinement is actually desired, as the roots do
not take up water anymore. Therefore the initial coarse grid
is taken as point of departure for each refinement and
refinement is performed for only those soil cubes that have
root nodes with a radial soil-root flow unequal to zero.

2.4. A Posteriori Refinement

[13] The a posteriori error estimate is a widely used
dynamic method for grid refinement in soil water flow
models [Mansell et al., 2002]. Based on the a posteriori error
estimate a grid that produces the smallest error between the
approximated and exact solutions (theory describing the
approximated and exact solution is given in detail in [e.g.,
Briggs et al., 2000]) for the current time step can be created.
The major disadvantage is that the obtained grid is not
fulfilling the criteria that were posed for the three-dimen-
sional soil-root model, namely the slave nodes should not
have a denoted sink term and the transitions in grid size
between two adjacent soil cubes should not exceed a
stepsize of one.
[14] Here the a posteriori error estimate is used as a tool to

validate the a priori refinement method. A derivation of the a
posteriori error estimate is given in Appendix A and a short
description is given hereafter. After the system of equations
is solved with some method the error of an element T can
be determined. The error depends on the residual values of
the vertices of an element (element residual) and on the
residual values of the faces of an element (jump residual).
From these residuals the so-called local error indicator (hH)
of an element can be deduced. Another important concept,
oscillation (oscH), accounts for information missed by the
averaging process associated with the employed finite
element method. The local error indicator and the oscillation
are important parameters for a posteriori refinement. If
refinement is required, by evaluation of a threshold value,
then elements can be marked based on these two parame-
ters. The first marking strategy selects the minimal subset of
elements T̂H of the mesh T H such that

X
T2T̂ H

hH Tð Þ2 � q2EhH Wð Þ2 ð4Þ

Figure 1. Bisection of a soil cube. (a) A coarse cube with a root node (black dot). This cube is split in
equal parts and (b) the refined cube is obtained. This cube is divided again in the subcube containing the
root node and leads to (c) the refined grid. In Figure 1c slave nodes (crosses) are denoted, but only those
at the drawn outer soil surfaces.
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with 0 < qE < 1 and W consists of all elements. The second
strategy replaces in equation (4) the error with oscillation

X
T2T̂ H

oscH Tð Þ2� q2ooscH Wð Þ2 ð5Þ

with 0 < qo < 1. The parameters qE,o are threshold parameters
that determine the number of selected elements that fulfill
equations (4) and (5). Note that, equivalent to the multilevel
refinement strategy, the soil cubes with the marked elements
are refined.

2.5. Simulation Scenarios

[15] A soil-root scenario is defined to demonstrate the
refinement techniques discussed in this paper. The soil-root
scenario consists of a soil column with dimensions 10 by 10
by 34 cm. The texture is a loamy soil with parameters qr =
0.08 cm3 cm�3, qs = 0.43 cm3 cm�3, Ks = 50 cm d�1, a =
0.04 cm�1, l = 0.5 and n = 1.6 [Carsel and Parrish, 1988]. The
Mualem-van Genuchten parameterization [van Genuchten,
1980] is used to evaluate the soil characteristics K(y) and q
needed by the Richards equation. The soil is considered
homogeneous with an initial water potential of �300 cm
throughout the soil. The root structure is a 500 h old root
generated by themodel of Somma et al. [1998] and consists of
9488 root segments. Root system hydraulic parameters
dependent on root segment age, for radial as well as axial
flowwithin the roots, were taken from thework ofDoussan et
al. [1998]. Only water flow, neither solute transport nor root
growth is simulated. Zero fluxes at the top, bottom and
lateral boundaries of the soil domain are imposed. Two type
of root collar boundary conditions are used for the simu-
lations. First, a constant water potential at the root collar
equal to �15,000 cm is imposed. Simulations are performed
over 5 days and the amount of water taken up by the roots,
expressed in the actual transpiration rate, is evaluated. Sec-
ond, a constant flux at the root collar equal to 15 cm3 d�1 is
imposed. The transpiration of water by the plant causes a
continuous water uptake by the roots and the simulation is
stopped if the xylem water potential reaches a certain water
potential threshold value at the root collar (�15,000 cm),
thereby simulating water stress conditions. This boundary
condition allows for investigation of soil-root interactions in
locally dry soil regions that will develop around roots
[Schröder et al., 2009].
2.5.1. Comparison of Static Irregular A Priori Grids
With Regular Grids
[16] Several scenarios were simulated to compare the

performances of the model with irregular versus regular
soil grids. Table 1 summarizes the 7 scenarios. Scenarios 1–4
are the standard nonrefined cases (0-level refinement) with

different levels of discretization. Cases 5–7 represent sce-
narios in which static a priori refined grids were generated:
based on the total root architecture and which do not change
over time. These cases differ by their initial soil discretiza-
tion and their level of refinement. After refinement, grids are
generated that end up with fine soil cubes (0.25 by 0.25 by
0.25 cm) around roots, equal to the minimum soil discreti-
zation that was set for scenario 1; reference scenario. Both
flux and water potential boundary conditions were used to
compare scenario 2–7 with the reference grid configuration
in terms of accuracy and computational time.
2.5.2. A Priori Versus A Posteriori Refinement
[17] The second comparison that is performed is between

a static a priori grid (scenario 6, Table 1) and a posteriori
grids. The a posteriori refinement method is adapted for this
purpose. Root water uptake is imposed for all root segments
of the root system, with a sink value equal to 1e–3 d�1. The
objective here is to investigate whether the static grid
obtained with the a priori refinement method is similar to
the one obtained with the well known a posteriori error
estimate. Generation of the grid by using an a posteriori
error estimator starts with an initial coarse grid of 1 by 1 by
1 cm soil cubes and refinement is allowed up to a minimum
discretization size (0.25 by 0.25 by 0.25 cm). Marking
procedures are alternated between local error (equation (4))
and oscillation (equation (5)) for 4 cases, see Table 2. With
these cases the effect of the marking sequences can be
evaluated. If a new grid is gained after refinement, the same
simulation time is rerun until a grid is obtained where all
soil cubes with a root segment, that takes up water, equal the
minimum discretization size. This methodological criterion
is similar as the one for static a priori refinement, and is
used in order to get a fair comparison between the two
refinement methods. However, based on mathematical rules
equation (A11) should be evaluated for the a posteriori
refinement technique. After the final grid is acquired it is
expanded to ensure mass conservation (slave nodes with a
denoted sink are extended to master nodes). From this
moment on we let the model run similarly to the static a
priori grid using the flux root collar boundary condition. It
may seem trivial to compare these cases but these compar-
isons are performed mainly for validation purposes of the a
priori grid. Secondly, information is gained on the accuracy
of simulations with a posteriori grids, on the effect of the
marking sequences and on the computational time to create
a priori versus a posteriori grids.
2.5.3. Dynamic A Priori Refinement Based on Active
Root Segments
[18] A third comparison evaluates dynamic a priori

refinement based on active root segments. We consider a

Table 1. Grid Configurations That Are Evaluated for the Soil-

Root Scenario

Scenario Type of Refinement Initial Soil Discretization (cm)

1 0-level refinement 0.25 by 0.25 by 0.25 (reference)
2 0-level refinement 0.5 by 0.5 by 0.5
3 0-level refinement 1 by 1 by 1
4 0-level refinement 2 by 2 by 2
5 1-level refinement 0.5 by 0.5 by 0.5
6 2-level refinement 1 by 1 by 1
7 3-level refinement 2 by 2 by 2

Table 2. The A Posteriori Scenarios for Different Marking

Sequence Parameters to be Used for a Two-Level Refinement

Scheme for the Soil-Root Scenario With a Flux Type Root Collar

Boundary Condition

Scenario Type of Refinement qE qo

Post 1 a posteriori 0.6 0.4
Post 2 a posteriori 0.6 0.3
Post 3 a posteriori 0.5 0.5
Post 4 a posteriori 0.5 0.2
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two-level refinement scheme (equivalent to scenario 6 of
Table 1) and again we impose the flux boundary condition
of 15 cm3 d�1 at the root collar. The results are compared in
terms of accuracy and computational time with the reference
case (scenario 1 of Table 1). Furthermore, they are com-
pared with the results obtained using static a priori grids.

3. Results and Discussion

3.1. Comparison of Static Irregular A Priori Grids
With Regular Grids

[19] First the scenario with the water potential boundary
condition at the root collar is compared for the seven grid
configurations of Table 1. Such root collar boundary con-
dition generates a decrease of the root collar flux over time
since the water potential gradient between the root xylem
tissue and the soil diminishes with soil water depletion. This
is observed in Figure 2. The area under the curves equals
the total amount of water that is taken up from the soil.
Evaluating the coarse grid configurations (scenarios
2 (magenta), 3 (yellow) and 4 (cyan)) a less sharp decrease
in simulated transpiration rate is noticed compared to the
reference scenario (black line), meaning that more water is
extracted from the soil. Thus following equation (1), the
water potential estimate at the soil-root interface has a
higher value than the reference scenario. This was expected
from results shown by Schröder et al. [2008]. The a priori
refined grids (scenarios 5 (green), 6 (red) and 7 (blue)) on
the other hand are hardly distinctive with the reference case,
indicating that the plant architecture indeed provides a very
good estimate for the locations where high soil water poten-
tial gradients will occur.
[20] The accuracy of the solutions obtained with the

different grid configurations can be tested over the whole
water potential range using a flux boundary condition at the
root collar. We are especially interested in dry soil regions
that develop around roots over time. Soil water potential
and xylem water potential distributions were compared at
three simulation times (0.5, 4 and 5.4 d). The first simula-
tion time (0.5 d) depicts wet soil conditions. At the second
simulation time (4 d) the soil around the roots is much dryer

and at the third simulation time (5.4 d) the limiting
threshold value at the root collar is almost reached for the
a priori refined scenarios and the reference case. From a soil
point of view we compare the root mean square error
(RMSE) of the soil water potentials of scenario 2–7 with
the reference scenario at an arbitrary x-y cross section (z =
�2 cm) in the soil column. Note that the root length density
is high in this cross-sectional plane (not shown). The RMSE
values are denoted in Table 3. At day 0.5 the soil is still very
wet and low RMSE values are observed. Larger differences
in RMSE values between the coarse discretization and the
a priori refined grids are already observed. In dryer soil
regions the RMSE of scenario 2 (0.5 by 05 by 0.5 cm) is
about a factor of 6 higher than the corresponding a priori
refined grid (scenario 5). Scenario 3 (1 by 1 by 1 cm) and
scenario 4 (2 by 2 by 2 cm) differ with a factor larger than
10 and 20, respectively, compared to their a priori refined
grids. The coarse discretizations are not predicting the soil
water potential distributions accurately. Maximum and
mean errors in xylem water potential for the whole root
structure are given in Table 4 for the three different
simulation times. At day 0.5 (wet soil conditions) the coarse
grid configurations have very large maximal errors (>35%).
The mean error though is still low (below 5%), except for
scenario 4. At day 4 and 5.4 (dryer soil conditions) the mean
errors of the coarse discretizations become larger than 5%.
The a priori refined grids, conversely, show maximum
errors at simulation time 5.4 of below 5.5% and mean errors
near and below 2.5%. The errors observed for the a priori
refined grids (scenario 5–7), even in local dry soil conditions,
can be considered marginal.
[21] Table 4 shows furthermore the total computational

time (Tc) and number of soil nodes used for each simulation.
Regular coarse grids are fast, even scenario 2 (0.5 by 0.5 by
0.5 cm) needs only 14% of the time needed for the reference
scenario. However, they give poor accuracy as observed
before. On the other hand, a priori refined grids take approx-
imately half the computational time of the reference grid (for
this example), while keeping a very good accuracy for the
water potential prediction as compared to the fine regular grid
(reference). The lowest errors, from a soil and root point of
view, are obtained with scenario 5 (one-level refinement
scheme). Note that the number of soil nodes that were
generated by the refinement approaches 5–7 differ, depen-
dent on the initial soil spatial discretization and the level of
refinement. No linear relation between the number of soil
nodes and the soil spatial resolution, as was the case for
regular grid configurations, can be found anymore. For this

Figure 2. Simulated root collar fluxes for scenarios 1–7
of Table 1 with a water potential root collar boundary
condition.

Table 3. RootMean Square Errors (cm) of the SoilWater Potentials

in x-yCross Section at z =�2 cm at SimulationDay 0.5, 4, and 5.4 da

Scenario

Referenceb 2 3 4 5 6 7

RMSE at t = 0.5 d – 2.5 7.7 15.7 0.9 1.0 1.0
RMSE at t = 4 d – 133.6 307.6 469.9 22.2 29.8 28.7
RMSE at t = 5.4 d – 216.0 472.4 880.8 33.5 45.2 43.6

aThe errors are obtained by comparing the simulated scenarios of Table 1
with the reference scenario.

bMinimum soil water potentials for the reference scenario at t = 0.5, 4,
and 5.4 d are �551, �9265, and �16614 cm, respectively.
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root structure scenario 6 (two-level refinement) generates the
fewest soil nodes. Moreover, the total computational time is
the lowest.

3.2. A Priori Versus A Posteriori Refinement

[22] The static a priori grid from scenario 6 (two-level
refinement, Table 1) is visually compared to two obtained
grids using the adapted a posteriori error estimate in Figure 3.
The adapted a posteriori error estimate creates a grid based

on the uptake of water by all root segments. The left graph
shows a transparent XZ view for the a priori grid, the
middle graph of the a posteriori grid (post 1) with a qE of
0.6 and qo of 0.4 and the right graph of the a posteriori grid
(post 4) with a qE and qo of respectively 0.5 and 0.2. The
a posteriori grids show that indeed soil voxels have a
finer discretization near roots where larger water potential
gradients are observed. In total, 99% of both a posteriori
refined grids corroborate with the a priori refined grid. On

Table 4. Xylem Water Potential (WPx) Errors for the Total Root Structure at Simulation Days 0.5, 4, and 5.4 and Computational Time Tc
for the Simulated Scenarios of Table 1 Compared to the Reference Scenarioa

Scenario

Reference 2 3 4 5 6 7

Max error in WPx (%) at t = 0.5 d – 35.1 41.0 46.0 0.7 0.8 0.8
Mean error in WPx (%) – 1.1 3.3 6.5 0.3 0.3 0.3
Max error in WPx (%) at t = 4 d – 40.8 68.2 78.3 3.4 4.6 4.5
Mean error in WPx (%) – 5.2 12.4 22.2 1.4 1.9 1.8
Max error in WPx (%) at t = 5.4 d – 39.2 64.9 81.3 3.9 5.5 5.2
Mean error in WPx (%) – 6.8 16.5 27.9 1.7 2.4 2.3
Tc compared to reference (%) 100 14 6 4 47 46 49
Number of soil nodes 230297 30429 4235 648 78312 69760 72113

aFurthermore, the number of soil nodes for each grid configuration is given.

Figure 3. (left) XZ aspect of the a priori grid (two-level refinement; scenario 6). (middle) XZ aspect
of the a posteriori grid with qE = 0.6, qo = 0.4 (scenario post 1 of Table 2). (right) XZ aspect of the
a posteriori grid with qE = 0.5 and qo = 0.2 (scenario post 4 of Table 2). The solid lines denote root
branches, whereas the dots represent soil nodes.
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W10412 SCHRÖDER ET AL.: GRID REFINEMENT FOR A 3-D SOIL-ROOT WATER TRANSFER W10412



the other hand, we notice for both scenarios differences in
transition from coarser to finer soil cubes, other than a
stepsize of one. Furthermore, the first depicted a posteriori
grid (post 1, qE = 0.6 and qo = 0.4) has more refined soil
cubes in the lower soil regions compared to the second
depicted a posteriori acquired grid. Note that there were no
flux boundary conditions at the soil boundaries. The major
cause of these differences is the sensitivity of the marking
sequences. The higher the instituted value for qE or qo the
more soil elements are selected for refinement. The results
of scenario post 1 point out that after selection of those
elements with a high error, other elements with lower errors
were selected as well. These elements were located further
away from the root structure, where no high water potential
gradients and errors reside. For the three-dimensional soil-
root water transfer model the choice of the marking sequence
parameters is not straightforward. This can furthermore be
observed from the number of soil nodes of the other
acquired a posteriori grids in Table 5. Both the error and
oscillation marking sequence parameters affect the number
of refined cubes largely. The first a posteriori grid (post 1)
creates a mesh with over 100.000 nodes, whereas the grid
with a qE of 0.5 and qo of 0.2 (post 4) is much closer to the
number of soil nodes of the a priori obtained grid. From all
grids the a priori grid is with respect to the spatial distribu-
tion more optimal than the a posteriori grids. Not only
because a minimum number of soil nodes is generated, but
also because transitions in soil cubes from coarse to fine and
vice versa differ only a stepsize of one.
[23] One of the adaptations for the usage of the a posteriori

error estimate was that refinement was stopped after all soil
cubes with a root segment, that takes up water, equal the
minimum discretization size. This adaptation can be tested
by analyzing the local error indicator in equation (A11). It
was observed that the difference in local error indicator
between the previous refined grid and the current refined
grid started to converge to a small value. Furthermore, the
maximum error was initially very large for the coarse soil
discretization and was reduced for each time the grid was
refined. When finally all soil cubes with root nodes in it
equaled the minimum discretization size an acceptable max-
imum error, in comparison to the estimated soil water
potential, was calculated. Moreover, there was no indication
to interrupt the a posteriori refinement procedure earlier than
the methodological imposed criterion that was implemented.
This indicates that the criterion we imposed is not a bad

assumption. Furthermore, the local error indicator was de-
rived separately for the a priori obtained grid and showed that
the maximum error was acceptable as well, in comparison
to the estimated soil water potential. This indicates further-
more that a priori grids lead to a reduction in the error
between exact and approximated solutions, compared to a
coarse grid configuration, and that refinement was performed
at correct locations where soil water potential gradients were
expected to be larger, i.e., near roots. After the ‘‘static’’ grid
is obtained with the adapted a posteriori error estimate we
let the simulation run for a flux root collar boundary
condition until stress is reached. A comparison of the xylem
water potential error in Table 5 at the three simulation times
(0.5, 4 and 5.4 d) shows that the errors obtained with the
a posteriori refinement approach (compared to the reference
scenario) are within range of the errors acquired with the
a priori grid. Mostly they are slightly higher, however, for
the post 3 case (qE, qo = 0.5) the xylem water potential errors
are slightly lower. This is mainly caused by the large
difference in number of soil nodes between those scenarios,
secondly by the location where soil nodes are refined. The
latter is dependent on qE and qo parameters. If in a soil layer
(perpendicular to the axial direction) more fine soil cubes are
generated the water potential gradient will be predicted
steeper compared to the case where more coarse soil cubes
are present, caused by the linear interpolation in elements
[Schröder et al., 2008]. More important is the comparison of
the computational time in Table 5. The computational time is
significantly affected, it is even larger than the reference
scenario for all a posteriori scenarios. This is mainly caused
by the computational routines to estimate the local error for
each element, furthermore because of additional routines to
obtain a grid that ensures conservation requirements. For the
a posteriori scenario 4 (qE = 0.5, qo = 0.2) the time to
generate the static grid with the adapted a posteriori error
estimate is about 10 times longer than the time needed using
the a priori approach.

3.3. Dynamic A Priori Refinement Based on Active
Root Segments

[24] Simulations were performed for flux root collar
boundary conditions. The errors in xylem water potential
and the computational time of the dynamic a priori grid
scenario, where refinement is based on the distribution of
the active roots, are compared to the reference scenario in
Table 6. Furthermore, the static a priori grid (scenario 6,

Table 5. Xylem Water Potential (WPx) Errors for the Total Root Structure at Simulation Days 0.5, 4, and 5.4 d and Computational Time

Tc for the Simulated A Posteriori Refinement Scenarios (Table 2) and Scenario 6 of Table 1 (A Priori Grid) compared to the Reference

Scenarioa

Scenario

Reference Pre-6 Post-1 Post-2 Post-3 Post-4

Max error in WPx (%) at t = 0.5 d – 0.8 0.6 0.6 0.5 0.7
Mean error in WPx (%) – 0.3 0.3 0.3 0.3 0.3
Max error in WPx (%) at t = 4 d – 4.6 5.6 5.7 3.8 5.0
Mean error in WPx (%) – 1.9 2.3 2.3 2.0 2.0
Max error in WPx (%) at t = 5.4 d – 5.5 7.0 6.9 5.6 5.8
Mean error in WPx (%) – 2.4 2.8 2.9 2.3 2.5
Tc compared to reference (%) 100 46 260 210 280 170
Number of soil nodes 230297 69760 106831 93220 100371 75151

aFurthermore, the number of soil nodes for each grid configuration is given.
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Table 1) is given to facilitate evaluation. Striking is the
difference in maximum water potential error. Despite the
fact that only those soil cubes are refined with a root
segment that takes up water, the water potential gradient
estimation from the outer soil column toward the roots is
affected. It is the same principle as was mentioned in the
previous section. In the dynamic approach more coarse
cubes are available in a horizontal soil layer and the
predicted water potential gradient from the soil outer
boundary toward the root segments is calculated less steep,
compared to the reference scenario. Although the maximum
xylem water potential errors are rather large in the dynamic
approach the mean errors are still below 5% and acceptable.
Furthermore, the errors are lower than the errors observed
for the coarse grid configurations (Table 4). The dynamic
approach based on a priori root information seems to be a
suitable approach for simulating quickly and with high
enough accuracy. The computational time is reduced by
20% compared to the static a priori grid. This is mainly
caused by the reduction in number of soil nodes. Approx-
imately 50% less soil nodes were initially generated with
the dynamic approach. Note that the grid was furthermore
constant over time, as the observed differences in radial
soil-root water flow (for the dynamic criterion) were less
than 0.001%, so that the criterion that was used to decide on
grid refinement did not indicate a need to refine addition-
ally. The dynamic approach can be applied on large soil and
root structures that can be run on a single processor for a
coarse soil discretization, but not for a regular fine soil
discretization, or with the static approach. This is however
dependent on the type of scenario and the available com-
puter resources. Furthermore, root growth can easily be
modeled with the dynamic refinement scheme.

4. Conclusions

[25] Because three-dimensional soil-root water transfer
models cost lots of computational time for accurate predic-
tion of water potential gradients in the soil and root system,
different grid refinement techniques were evaluated. Because
roots take up water and create large soil water potential
gradients around them an a priori grid refinement technique

was introduced based on the root architecture. It can either
be used in a static or dynamic approach.
[26] Results from a soil-root scenario for two different

root collar boundary conditions show that the accuracy of
static a priori refined grids is maintained in comparison to a
regular fine grid that serves as a reference. In contrast, regular
coarse grids do not predict accurate solutions. Furthermore,
due to the reduction of the grid complexity the computational
time is reduced largely.
[27] The static grid that was obtained by a priori refine-

ment can be obtained using a well recognized a posteriori
refinement technique (adapted to obtain this static grid),
indicating once more that the a priori obtained grid is well
predicted at locations were roots reside. The disadvantages
of the adapted a posteriori refinement technique, though,
were firstly that the grids were spatially not as optimal as
the a priori acquired grids; not a minimum number of soil
nodes were generated, and not always a transition in soil
cubes from coarse to fine and vice versa differed a stepsize
of one. Secondly, no significant gain in accuracy, compared
to the results using a priori grids, was obtained and thirdly
the computational time to gain the static a priori grid was
much larger than the a priori approach. As a consequence
the total computational time for performed simulations
exceeded the time of the reference scenario, which makes
the usage of the adapted a posteriori refinement approach in
these type of soil-root models questionable. On the other
hand, if the point of departure is an a priori grid then the a
posteriori refinement technique could be used whenever soil
gradients, further away from the roots, get too large after
time, e.g., in soil layers were the average water content is
very low or due to rapidly changing soil boundary conditions
[Mansell et al., 2002]. The latter, however, is implicitly
considered in the a priori refinement technique. Using the a
posteriori error estimator the grid could be extended such that
a better accuracy could be acquired. Note that the trade off
between computational costs of the a posteriori error estima-
tor and the gain in accuracy/overall computational time
should be minimized.
[28] Because only part of the root system is active a static

a priori grid overestimates the required number of refined
soil cubes. Therefore dynamic refinement is incorporated
using the a priori refinement technique and shows that with
an acceptable accuracy, compared to the reference case, the
computational time can be reduced even more. The usage of
dynamic refinement can be an advantage for modeling large
soil and root structures with high accuracy for which, on
single processors, only coarse soil and root discretizations
with low accuracy can be run. Furthermore, dynamic
methods can easily be used to model root growth, opposed
to static refinement methods. In latter case it may occur that
new grown roots are located in coarse soil cubes which may
be undesirable if they start to take up water.

Appendix A: A Posteriori Error Estimate for the
Three-Dimensional Soil Water Flow Equation

[29] The a posteriori error estimate is deduced for the
Richards equation

@q
@t
¼ r � K ryþ ezð Þð Þ � St ðA1Þ

Table 6. Xylem Water Potential (WPx) Errors for the Total Root

Structure at Simulation Days 0.5, 4, and 5.4 d and Computational

Time Tc for the Simulated Dynamic A Priori Refinement Scenario

Compared to the Reference Scenarioa

Scenario

Reference
Static

A priori
Dynamic
A priori

Max error in WPx (%)
at t = 0.5 d

– 0.8 4.3

Mean error in WPx (%) – 0.3 0.7
Max error in WPx (%)
at t = 4 d

– 4.6 10.3

Mean error in WPx (%) – 1.9 2.8
Max error in WPx (%)
at t = 5.4 d

– 5.5 13.9

Mean error in WPx (%) – 2.4 3.8
Tc compared to reference (%) 100 46 37

aFurthermore, the static a priori scenario 6 (Table 1) is denoted for
comparison purposes.
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where q is the volumetric soil water content [cm3 cm�3],
K(y) [cm d�1] the soil hydraulic conductivity, St [d

�1] the
sink term regulating root water uptake, t [d] the time and
ez = rz the unit vector field in the vertical direction. The
time derivative of the water content is related to the water
potential by @q

@t = C(y)@y@t , where C(y) [cm�1] is the soil
capacity. We use an implicit backward Euler scheme that
transforms equation (A1) in

qnþ1 � qn
4t

¼ r � K rynþ1 þ ez
� �� �

� St ðA2Þ

where the subscript n denotes the previous time step, the
subscript n+1 the current time step and rt the time stepsize.
Equation (A2) can be rewritten as

�r � Krynþ1
� �

þ qnþ1
4t
¼ fn ðA3Þ

where fn = r � (Kez) + qn=4t � St.
[30] To find the solutiony 2 V for each time step we need

the weak form of equation (A3) over the domain W such that

B y; v½ � ¼
Z
W

Kry � rvþ q
4t

v

� �
dWþ

Z
G

Kryvð Þ � ndG

¼
Z
W
fvdW ¼ F vð Þ 8v 2 V ðA4Þ

where v is a weight function and n the outward unit vector
normal to boundary G. Note that we dropped the time index.
The discrete weak form is then given by

B yH ; v½ � ¼ F vð Þ 8v 2 VH ðA5Þ

where yH 2 VH is the approximated solution.
[31] The weight functions are derived for linear tetrahe-

dral elements [Cheng and Zhang, 2007]. Assembling of the
system of equations is performed as was done by Šimunek et
al. [1995]. After the linear system of equations is solved
with some method we can evaluate the error that emerges
when approximating the solution. Substitution of the error
eH := y � yH (difference between exact and approximated
solution) into the bilinear form B[eH, v] (equation (A5)) and
integrate by parts elementwise the so-called error represen-
tation formula is obtained [Nochetto, 2006]

B eH ; v½ � ¼
X
T2T H

Z
T

RT yHð Þvþ
X
S2SH

Z
S

JS yHð Þv 8v 2 V ðA6Þ

The left part RT (yH) is associated with the element residual,
the right part JS(yH) with the jump residual; similarly to the
left handside of equation (A4).
[32] For a tetrahedral element T of the mesh T H the

element residual is defined as

RT yHð Þ ¼ f þr � KryHð Þ � qH
4t

ðA7Þ

where qH is the water content that belongs to the
approximated solution variable yH. For the set of interior
faces SH of the mesh T H the jump residual is defined as

JS yHð Þ ¼ �KryþH � nþ � Kry�H � n� ðA8Þ

where S is the common side of elements T+ and T�with unit
outward normals n+ and n�, respectively. From this we can
deduce the local error indicator hH(T) by

hH Tð Þ2:¼ H3
T k RT yHð Þ k2L2 Tð Þ þ

X
S�@T

H2
S k JS yHð Þ k2L2 Sð Þ ðA9Þ

where H stands for the mesh size and L2 is the vector space.
The element residual is analog to the residual in linear algebra
and describes the relation between the error eH and residual
for the vertices of an element. The jump residual evaluates the
boundaries of the elements.
[33] Another important concept, oscillation, accounts for

information missed by the averaging process associated
with the finite element method. The oscillation on the
elements T 2 T H is defined by

oscH Tð Þ2:¼ H3
T k RT � RT k2L2 Tð Þ ðA10Þ

where RT is denoted by

R
T
RTdT

volT
, where volT is the volume of

the element.
[34] Important inequalities that belong to equations (A9)

and (A10) can be deduced [Nochetto, 2006]. There exist
constants C1, C2 > 0 such that

jjjy� yH jjj2 � C1hH Wð Þ2

C2hH Tð Þ2� jjy� yH jj2H1 wTð Þ þ oscH wTð Þ2
ðA11Þ

where the energy norm is given by j|jvj|j = B[v, v]1/2,
W consists of all elements and wT of all elements sharing at
least one face with T. The first inequality tells us that the
sum of the element residual and jump residual is a reliable
upper bound, the latter inequality indicates that hH(T) is a
locally sharp error estimate provided that the oscillation is
small. This leads to two obvious marking strategies for a
subset of elements T̂H of themesh T H such that after refining,
both error and oscillation are reduced. These strategies are
given in equations (4) and (5).
[35] After the soil system is solved the local error indicator

(equation (A9)) is calculated and evaluation of the upper
inequality in equation (A11) indicates if refinement is need-
ed. If so, two marking procedures can be chosen dependent
on the strategy of refinement.

Appendix B: Addendum

[36] This addendum is developed to assist in implement-
ing the a priori refinement theory as explained in the main
text. The first assumption is that the spatial coordinates of
the grid, representing in this case the soil system, and of the
root structure are known. In addition, the element informa-
tion containing node id’s is known, i.e., which nodal
coordinate belongs to an element. The soil grid is assumed
to be divided into cubes and each cube consists of six
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tetrahedral elements of equal size. An overview of the
refinement module is given in Figure B1.
[37] The first goal is to find the coordinates of the eight

cube vertices that surround a root node. This identified soil
cube should be subdivided into smaller cubes.

B1. Finding a Root Node in a Cube

[38] This is a short algorithm that can be obtained using
several methods. Two methods are explained hereafter.
[39] Needed: increment length of a soil cube in x, y and z

direction (dx, dy, dz)
[40] Alternative: minimum x and y coordinate of the soil

grid (minX, minY); maximum z coordinate of the soil grid
(maxZ). Number of elements in x and y direction (nex, ney)
[41] 1. A simple algorithm, but costs more computational

time
[42] . consider a root node (xroot)
[43] . make a loop over all x coordinates of the soil

nodes (xsoil), for each nodal coordinate check whether the x
coordinate lies in the range xroot � dx � xsoil � xroot + dx do

the same, for the y, z coordinates, but with a loop over the
previously nodes that were found to be in range
[44] . finally eight soil nodes are found to be used for

further processing
[45] 2. An algorithm that uses less computational resour-

ces uses the properties of the regular grid and the consec-
utive numbering of elements with its coordinates

d1 ¼ xroot � minXð Þ � 1e� 6

ixmin ¼ 1þ floor d1=dxð Þ*2

d1 ¼ yroot � minYð Þ � 1e� 6

ixymin ¼ ixmin þ floor d1=dyð Þ*nex

d1 ¼ abs root 3ð Þ � maxZð Þ þ 1e� 6

imin ¼ ixymin þ floor d1=dzð Þ*nex*ney

Figure B1. Flowchart of the refinement module.
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The variable imin gives the cube number that consists of the
vertices surrounding the root node. Note that this algorithm
is very specific to the study at hand.

B2. Creating Subcubes

[46] If the eight corner nodes of the soil cube surrounding
the root node are identified the cube can be subdvided into
smaller cubes (up to a level of refinement that is desired).
Nineteen new coordinates are created from the eight already
existing nodes, see Figure B2. These generated coordinates
are added to the already existing coordinate list. Further-
more, it is checked whether the newly generated coordinates
were already created. If so, their index number in the
coordinate list is marked, such that after the process of
refinement, these redundant coordinates can be removed.
[47] Besides the generation of new coordinates the ele-

ment list should be updated as well. The eight subcubes
have six new elements each that need to be listed (placed at
end of element list). The elements that initially exist (for the
coarser soil cube) need to be removed. The problem is that
from the coordinate list, double entries were removed. The
element list contains coordinate id’s. If a node was removed,
the coordinate next in the list has a lower number then
actually listed in the element information. Therefore the
coordinate values in the element list have to be adjusted.

This is done by a loop over all removed soil coordinates,
that are checked with each coordinate entry in the element
list. If the coordinate value in the element list is larger than
the one removed, then reduce that guy by one; update the
removal coordinate list as well.
[48] The only possible way to remove coordinate and

element entries is to mark each refined cube. With this index
information one can track each coordinate and element
entry in their lists, respectively.
[49] The above listed procedure initiates refinement only

for one level. If the level of refinement is larger than one,
additional refinement of the just refined soil cube is desired.
The root node is now searched in the newly generated eight
cubes, similarly as in the previous section. The same
routines are applied (but the search in which soil cube the
root node lies costs less effort: only eight cubes have to be
searched). The tracking of the new generated soil cubes is
more difficult, eight new cubes are needed, with tracking
numbers. This is far more extensive for a refinement level
larger than two. Until now the refinement routine is capable
to save the indices of three level of refinements. An
overview of the tracking system is given in Figure B3.
[50] If a soil cube is already refined, then the tracking

number is retrieved to find the created coordinates and

Figure B2. Subdividing a soil cube into eight additional cubes: generating additional 19 nodes for the
subcubes. The corner nodes of the coarser cube are denoted by C1–C8.
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element info in the coordinate and element list, respectively.
Refinement is considered from then on. If this soil cube was
already refined though, then no additional refinement is
needed.

B3. Extension of the Grid

[51] The general refinement method described above can
be used for multiple goals. For example, if we consider the
soil-root problem as discussed in this study, we obtain, after
refinement of all the soil cubes with a root node in it, refined
cubes that possess vertices with a denoted sink term. If such
a vertex is a slave node and has a sink term value larger than
zero the grid around the slave node should be extended.
[52] Slave nodes: To generate a list with slave nodes one

need to know how many neighbors it has. This is counted,
furthermore, based on the geometry of the node it is
calculated how many entries there should be, from this
one can deduce if a soil node is a slave node or a master
node.
[53] One could make a loop over all slave nodes, check

whether they have a sink value larger than zero, if so, then
take the cubes in which this slave node lies and refine those
cubes using the refinement routine.
[54] A different application of refinement is to check

whether the soil cube next to a slave node differs a stepsize
of one in the level of refinement, if not, then this cube
should be refined, one level lower than its original value
(e.g., if the cube with the slave node has a cube length of
0.25 cm and the cube next to slave node has a length of 1
cm, then the cube next to the slave node should be refined to
a length of 0.5 cm).

[55] Top and bottom boundary conditions can be refined
by using the refinement routine as well. If top boundary
conditions are imposed (e.g., rainfall) then the cubes in the
topsoil layer are refined to the lowest instituted refinement
level (e.g., 0.25 cm) and the cubes underneath it are one
level larger until the coarse cube configuration is reached.
[56] After each change in grid configuration, the final

coordinate and element lists have to be compiled. Thus the
lists where the newly generated coordinates and elements
are added are finalized by removing redundant coordinates
and elements.

B4. Operations That Need to be Performed After
the New Grid Is Obtained

[57] This is dependent of the problem under investigation.
Normally, the same routines that deal with the grid config-
uration have to be reinitialized (also boundary conditions).
For example, the material parameter list. All nodal coor-
dinates possess a value representing the soil material they
belong too. If the soil exists of one material only, then there
exists an array with a length equal to the number of nodal
coordinates with each entry value equal to one. This array
should be reinitialized, as some entry values, due to the new
generated nodal coordinate list, are declared empty.
[58] Variables that are also dependent of the grid config-

uration are of course the variables within the Richards
equation (water potential, water content, sink term). Inter-
polation of these variables is required. This can be obtained
directly after the new coordinate and element lists are
finalized. A new generated soil node is considered, and
the soil nodes around this guy are retrieved. Because the
location of the surrounding nodes may vary, due to different
generated cube sizes, a loop over all possible dimensions of
the soil cube must be made (e.g., starting with a coarse grid
of 1 by 1 by 1 cm, two-level refinement; then first the
surrounding perimeter with a radius of 0.25 cm is checked,
if no connecting nodes are found then a distance of 0.5 cm
is used to find neighboring nodes). First in the horizontal
(x, y) direction all adjacent nodes of the newly generated
soil node are identified and interpolation is performed, if no
interpolation is possible anymore, vertical interpolation is
performed for those soil nodes that were formed in another
soil layer but had no neighboring nodes in the previous
coarser soil grid. Horizontal and vertical direction is alter-
nated, until all new nodes have interpolated values.
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