001     59525
005     20230426083232.0
024 7 _ |a 10.1103/PhysRevB.76.235201
|2 DOI
024 7 _ |a WOS:000251986500054
|2 WOS
024 7 _ |a 2128/7758
|2 Handle
037 _ _ |a PreJuSER-59525
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Akola, J.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe
260 _ _ |a College Park, Md.
|b APS
|c 2007
300 _ _ |a 235201-1 - 235201-10
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 76
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Phase-change materials are of immense importance for optical recording and computer memory, but the structure of the amorphous phases and the nature of the phase transition in the nanoscale bits pose continuing challenges. Massively parallel density functional simulations have been used to characterize the amorphous structure of the prototype materials Ge2Sb2Te5 and GeTe. In both, there is long-ranged order among Te atoms and the crucial structural motif is a four-membered ring with alternating atoms of types A (Ge and Sb) and B (Te), an "ABAB square." The rapid amorphous-to-crystalline phase change is a reorientation of disordered ABAB squares to form an ordered lattice. There are deviations from the "8-N rule" for coordination numbers, with Te having near threefold coordination. Ge atoms are predominantly fourfold coordinated, but-contrary to recent speculation-tetrahedral coordination is found in only approximately one-third of the Ge atoms. The average coordination number of Sb atoms is 3.7, and the local environment of Ge and Sb is usually "distorted octahedral" with AB separations from 3.2 to 4 A in the first coordination shell. The number of A-A bonds is significantly greater in GeTe than in Ge2Sb2Te5. Vacancies (voids) in the disordered phases of these materials provide the necessary space for the phase transitions to take place. The vacancy concentration in Ge2Sb2Te5 (11.8%) is greater than in GeTe (6.4%), which is consistent with the better phase-change performance of the former.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
542 _ _ |i 2007-12-04
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Jones, R. O.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB60912
773 1 8 |a 10.1103/physrevb.76.235201
|b American Physical Society (APS)
|d 2007-12-04
|n 23
|p 235201
|3 journal-article
|2 Crossref
|t Physical Review B
|v 76
|y 2007
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.76.235201
|g Vol. 76, p. 235201-1 - 235201-10
|p 235201
|n 23
|q 76<235201-1 - 235201-10
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 76
|y 2007
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.76.235201
856 4 _ |u https://juser.fz-juelich.de/record/59525/files/FZJ-59525.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/59525/files/FZJ-59525.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/59525/files/FZJ-59525.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/59525/files/FZJ-59525.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:59525
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |0 LIC:(DE-HGF)APS-112012
|a American Physical Society Transfer of Copyright Ag
|2 HGFVOC
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)93610
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/4371246a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1359
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1350
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1627
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.21.1450
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.97617
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. K. Olson
|y 2005
|2 Crossref
|o J. K. Olson 2005
999 C 5 |a 10.1557/S0883769400036368
|9 -- missing cx lookup --
|1 N. Yamada
|p 48 -
|2 Crossref
|t MRS Bull.
|v 21
|y 1996
999 C 5 |a 10.1038/nmat1215
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1539
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2717094
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.255501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic051677w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.055505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.060201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2387870
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.235309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.54.1392
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1389294
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.3856
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.83.5042
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1568081
|9 -- missing cx lookup --
|1 R. O. Jones
|p 9257 -
|2 Crossref
|t J. Chem. Phys.
|v 118
|y 2002
999 C 5 |a 10.1103/PhysRevB.75.174207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.1993
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.26.1738
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0927-0256(94)90105-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.11487
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.73.2599
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 2000
|2 Crossref
|t Low Energy Neutrons and their Interaction with Nuclei and Matter
|o Low Energy Neutrons and their Interaction with Nuclei and Matter 2000
999 C 5 |a 10.1016/0022-3093(83)90017-0
|9 -- missing cx lookup --
|1 H. Ruppersberg
|p 165 -
|2 Crossref
|t J. Non-Cryst. Solids
|v 55
|y 1981
999 C 5 |a 10.1103/PhysRevLett.81.4915
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.30.101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/20/10/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physb.2004.03.289
|9 -- missing cx lookup --
|1 M. Delheusy
|p 1055 -
|2 Crossref
|t Physica B
|v 350
|y 2004
999 C 5 |a 10.1080/01418617908234879
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0108767302006669
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.035701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1884248
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.045210
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.115205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-1-4899-6451-9
|1 V. M. Glazov
|2 Crossref
|9 -- missing cx lookup --
|y 1969


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21