000059558 001__ 59558
000059558 005__ 20200423204547.0
000059558 0247_ $$2DOI$$a10.1063/1.2771060
000059558 0247_ $$2WOS$$aWOS:000248866600064
000059558 0247_ $$2Handle$$a2128/17417
000059558 037__ $$aPreJuSER-59558
000059558 041__ $$aeng
000059558 082__ $$a530
000059558 084__ $$2WoS$$aPhysics, Applied
000059558 1001_ $$0P:(DE-Juel1)VDB68817$$aQiu, L.$$b0$$uFZJ
000059558 245__ $$aNuclear magnetic resonance in the earth's magnetic field using a nitrogen-cooled superconducting quantum interference device
000059558 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2007
000059558 300__ $$a072505
000059558 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059558 3367_ $$2DataCite$$aOutput Types/Journal article
000059558 3367_ $$00$$2EndNote$$aJournal Article
000059558 3367_ $$2BibTeX$$aARTICLE
000059558 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059558 3367_ $$2DRIVER$$aarticle
000059558 440_0 $$0562$$aApplied Physics Letters$$v91$$x0003-6951
000059558 500__ $$aRecord converted from VDB: 12.11.2012
000059558 520__ $$aThe authors recorded nuclear magnetic resonance (NMR) spectra of water, benzene, fluorobenzene, and 2,2,2-trifluoroethanol in the earth's magnetic field (EMF) using a nitrogen-cooled superconducting quantum interference device (SQUID). In trifluoroethanol, the broadband detection characteristics of the SQUID with a noise floor of about 70 fT/root Hz enabled authors to simultaneously observe fluorine and proton spectra at 1940 and 2060 Hz Larmor frequency, reflecting their heteronuclear J coupling in the high-field limit without showing a measurable chemical shift. To reduce the noise in EMF-NMR, the authors suggest the use of frequency-adjusted averaging, which compensates line broadening due to EMF fluctuations. (C) 2007 American Institute of Physics.
000059558 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000059558 588__ $$aDataset connected to Web of Science
000059558 650_7 $$2WoSType$$aJ
000059558 7001_ $$0P:(DE-Juel1)VDB5476$$aZhang, Y.$$b1$$uFZJ
000059558 7001_ $$0P:(DE-Juel1)128697$$aKrause, H.-J.$$b2$$uFZJ
000059558 7001_ $$0P:(DE-Juel1)VDB7061$$aBraginski, A. I.$$b3$$uFZJ
000059558 7001_ $$0P:(DE-HGF)0$$aBurghoff, M.$$b4
000059558 7001_ $$0P:(DE-HGF)0$$aTrahms, L.$$b5
000059558 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2771060$$gVol. 91, p. 072505$$p072505$$q91<072505$$tApplied physics letters$$v91$$x0003-6951$$y2007
000059558 8567_ $$uhttp://dx.doi.org/10.1063/1.2771060
000059558 8564_ $$uhttps://juser.fz-juelich.de/record/59558/files/1.2771060.pdf$$yOpenAccess
000059558 8564_ $$uhttps://juser.fz-juelich.de/record/59558/files/1.2771060.gif?subformat=icon$$xicon$$yOpenAccess
000059558 8564_ $$uhttps://juser.fz-juelich.de/record/59558/files/1.2771060.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000059558 8564_ $$uhttps://juser.fz-juelich.de/record/59558/files/1.2771060.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000059558 8564_ $$uhttps://juser.fz-juelich.de/record/59558/files/1.2771060.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000059558 909CO $$ooai:juser.fz-juelich.de:59558$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000059558 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000059558 9141_ $$y2007
000059558 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000059558 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000059558 9201_ $$0I:(DE-Juel1)IBN-2-20090406$$d31.12.2010$$gIBN$$kIBN-2$$lBioelektronik$$x1
000059558 970__ $$aVDB:(DE-Juel1)93642
000059558 980__ $$aVDB
000059558 980__ $$aConvertedRecord
000059558 980__ $$ajournal
000059558 980__ $$aI:(DE-Juel1)IBN-2-20090406
000059558 980__ $$aUNRESTRICTED
000059558 9801_ $$aFullTexts