000059679 001__ 59679
000059679 005__ 20210812135817.0
000059679 0247_ $$2DOI$$a10.1111/j.1365-2389.2007.00927.x
000059679 0247_ $$2WOS$$aWOS:000248479300003
000059679 0247_ $$2Handle$$a2128/28462
000059679 037__ $$aPreJuSER-59679
000059679 041__ $$aENG
000059679 082__ $$a630
000059679 084__ $$2WoS$$aSoil Science
000059679 1001_ $$0P:(DE-Juel1)129438$$aBerns, A. E.$$b0$$uFZJ
000059679 245__ $$aThe 15N-CPMAS spectra of simazine and its metabolites: measurements and quantum chemical calculations
000059679 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2007
000059679 300__ $$a882 - 888
000059679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059679 3367_ $$2DataCite$$aOutput Types/Journal article
000059679 3367_ $$00$$2EndNote$$aJournal Article
000059679 3367_ $$2BibTeX$$aARTICLE
000059679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059679 3367_ $$2DRIVER$$aarticle
000059679 440_0 $$01973$$aEuropean Journal of Soil Science$$v58$$x1351-0754
000059679 500__ $$aRecord converted from VDB: 12.11.2012
000059679 520__ $$aDFT calculations are a powerful tool to support NMR studies of xenobiotics such as decomposition studies in soil. They can help interpret spectra of bound residues, for example, by predicting shifts for possible model bonds. The described bound-residue models supported the hypothesis of a free amino side chain already suspected by comparison with the experimental data of the standards. No match was found between the calculated shifts of amide bondings of the amino side chains (free or substituted) and the experimental NMR shifts of a previous study. In the present paper, first-principles quantum chemical calculations were used to support and check the interpretation of the 15N cross polarization-magic angle spinning nuclear magnetic resonance (15N-CPMAS NMR) spectra of simazine and its metabolites. Density functional theory (DFT) calculations were performed using Gaussian 03 and the nuclear magnetic shielding tensors were calculated using the Gauge-Independent Atomic Orbital (GIAO) method and B3LYP/6–311+G(2d,p) model chemistry. Good agreement was reached between the calculated and measured chemical shifts of the core nitrogens and the lactam and lactim forms of the hydroxylated metabolites could be clearly distinguished. The calculated spectra showed that these metabolites exist preferentially in the lactam form, an important fact when considering the possible interactions of such hydroxylated metabolites with the soil matrix. Although the calculated bound-residue models in the present study only partly matched the experimental data, they were nevertheless useful in helping to interpret the experimental NMR results of a previous study. To get a better match between the calculated and the measured shifts of the side-chain nitrogens the calculations need to be further developed, taking into account the influence of neighbouring molecules in the solid state. Altogether, quantum chemical calculations are very helpful in the interpretation of NMR spectra. In the future, they can also be very useful for the prediction of NMR shifts, in particular when it is not possible to measure the metabolites due to a lack of material or in cases where practical experiments cannot be conducted.
000059679 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000059679 588__ $$aDataset connected to Web of Science, Pubmed
000059679 7001_ $$0P:(DE-HGF)0$$aBertmer, M.$$b1
000059679 7001_ $$0P:(DE-HGF)0$$aSchäffer, A.$$b2
000059679 7001_ $$0P:(DE-Juel1)VDB9206$$aMeier, R. J.$$b3$$uFZJ
000059679 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000059679 7001_ $$0P:(DE-Juel1)129496$$aLewandowski, H.$$b5$$uFZJ
000059679 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/j.1365-2389.2007.00927.x$$gVol. 58, p. 882 - 888$$p882 - 888$$q58<882 - 888$$tEuropean journal of soil science$$v58$$x1351-0754$$y2007
000059679 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-2389.2007.00927.x
000059679 8564_ $$uhttps://juser.fz-juelich.de/record/59679/files/j.1365-2389.2007.00927.x.pdf$$yOpenAccess
000059679 909CO $$ooai:juser.fz-juelich.de:59679$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000059679 9141_ $$y2007
000059679 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000059679 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000059679 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000059679 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000059679 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000059679 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000059679 970__ $$aVDB:(DE-Juel1)93795
000059679 980__ $$aVDB
000059679 980__ $$aConvertedRecord
000059679 980__ $$ajournal
000059679 980__ $$aI:(DE-Juel1)IBG-3-20101118
000059679 980__ $$aI:(DE-82)080011_20140620
000059679 980__ $$aI:(DE-Juel1)VDB1045
000059679 980__ $$aUNRESTRICTED
000059679 9801_ $$aFullTexts
000059679 981__ $$aI:(DE-Juel1)IBG-3-20101118
000059679 981__ $$aI:(DE-Juel1)VDB1045
000059679 981__ $$aI:(DE-Juel1)VDB1047