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We outline a semi-automatic procedure for structure ptediof proteins. A first analysis of
the performance of this procedure in the CASP 2006 competisi presented.

1 Introduction

In order to test combinations of physics-based simulageshniques and sequence-based
prediction methods, our group participated in the "Critisasessment of Techniques for
Protein Structure Prediction” (CASP) competition in thensoer of 2006. As a first-time
participant our goal was to establish a semi-automatic flmxk We combined existing
methods for fold recognition with our refinement algorithiasting heuristics for the se-
lection at each step. In this article, we give an overviewhef workflow and the results
of an in-depth statistical analysis of our results. In gaittir, we assess the significance of
measured performance differences between the predictdinads. Analyzing our work-
flow, we try to find the critical points where alternative dgcns lead to a significant
change in the results. Our aim is to obtain rules that guigedicision process in the
workflow to optimize our predictions.

2  Workflow

The first step in our workflow is the manual selection of tertgsdrom 3D-Jury predic-
tions. Preference is given to high 3D-Jury-scores and aggatebetween the secondary
structure of the template and the predicted secondarytsteuof the target sequence. For
targets that were obviously not comparative modeling targ&D-Jury predictions from
fold recognition servers are preferred.

We search the fold spatasing CABS. This parallel tempering Monte Carlo program
uses constraints from the respective 3D-Jury templatesermhdary structure prediction
by PSlpred 2.5 We use 32 replicas for sequences with less than 200 resatuk§4
replicas for proteins with longer sequences. The statist@s between 15,000 sweeps for
long sequences and 100,000 sweeps for short sequences.
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Clustering is performed using hierarchical clusteringmaP CMP using a fixed RMSD
of 2.5A as clustering radius. Structure clusters are selecteedbas cluster averages of
CABS energy and structure similarity (TM-sc8y¢o the PDB structure on which the 3D-
Jury template was based.

Averaged structures from the selected clusters are subjesgularization by SMMP
Regularized structures are ranked according to the tothpartial energies of the struc-
tures in SMMP. In ambiguous cases, the consistency of thigmg with a similar ranking
based on energy terms of PROFA® checked.

The 5 to 10 structures ranked best are selected for refinenfr@mtmost structures,
refinement involves a set of constrained simulated anrgealins with SMMP, starting
from very high temperatures. Most structures dissolve anfthmm into local minima of
the potential that are close to the input structures of tfiaement procedure. The final
structures from different annealing trajectories are cag&in ranked following a similar
procedure as for the initial selection for the refinemensriinal selection and ranking is
based on several energy terms, secondary structure camertsual inspection.

Figure 1. Grey is the experimental structure (2HE9). Calaseour best structure for T0346.

3 Comparing Prediction Methods

Not all of our predictions are as good as the one in figure 1rdieioto assess the signifi-
cance of measured performance differences between us l@dpediction methods we
use a nonparametric statistical test, the FriedmaP. tistas a simple two-way layout for
k treatments (groups) andblocks (target).

GROuUP
k
TARGET A Ay As ... A R, = Z Tij
j=1
#1 11 T12 T13 ... Tik Rl
#2 21 T22 T23 ... Tk R2
#3 31 T32 T33 ... T3k R3
#n Tnl Tn2 Tn3 - Tnk R,
n k n
RJ = Z Tij Rl R2 R3 Rn Z Rj = Z Rl
i=1 J=1 i=1
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For each of then experiments thek results are ranked from for the best to
k for the worst result. The ranked results are based on TMesemid RMSD for
the predictions to the experimental structure. The Nupdthesis of the test is:
Ho @ g1 = p2 = -+ = p (no treatment differs). The rank of groypat ex-
periment is given byr;;. R; is the sum of the: ranks of groupj. R; is the mean of the
n ranks of groug andR.. = ££1,
Compute

S is an approximation for thg? distribution.

The Nullhypothesis is rejected in all test cases. Acrosdigié we find significant
differences between all servers. The best serverZbamg-ServerMetaTasserPmod-
eller 6 andBayesHHoutperforming our procedure and demonstrating the neefliftirer
improvement of our workflow.

4 Workflow Analysis

For this reason, we have decided to search the workflow fiic&rpoints where alternative
decisions lead to significant changes and improvementsriresults. We asked ourselves
the following questions:

e Do we select the best template?

e Do we trust PSlpred for the secondary structure prediction?
e Which structures should be used for clustering?

e Which clusters are the best?

e Is the final ranking of energy terms ideal to find the best $tme®

As an example, we show the analysis of the workflow for tar@&58 (130 residues):

best templatg our template
best template selected ? RMSD 3.98 3.89
TM-score 0.515 0.395

do we trust PSlpred ? good secondary structure prediction by PSlpred
which structures for clustering [? good predictions often at the lower replica numbers
best clusters are? average of CABS energy not always the best
ranking of energy terms ideal 7 structure ranked 1st TM-score 0.3323

best structure ranked 12th  TM-score 0.5085
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5 Conclusion

We have described a method for structure prediction of pret&Vhile currently not com-
petitive with other approaches, we have shown a way to aaatgzperformance and to
explore possible improvements.
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