001     60039
005     20200402210438.0
024 7 _ |2 pmid
|a pmid:18077385
024 7 _ |2 pmc
|a pmc:PMC2154408
024 7 _ |2 DOI
|a 10.1073/pnas.0705513104
024 7 _ |2 WOS
|a WOS:000251885000011
037 _ _ |a PreJuSER-60039
041 _ _ |a eng
082 _ _ |a 000
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |a Semmrich, C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Glass transition and rheological redundancy in F-actin solutions (from the cover)
260 _ _ |a Washington, DC
|b Academy
|c 2007
300 _ _ |a 20199 - 20203
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Proceedings of the National Academy of Sciences of the United States of America
|x 0027-8424
|0 5100
|v 104
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The unique mechanical performance of animal cells and tissues is attributed mostly to their internal biopolymer meshworks. Its perplexing universality and robustness against structural modifications by drugs and mutations is an enigma in cell biology and provides formidable challenges to materials science. Recent investigations could pinpoint highly universal patterns in the soft glassy rheology and nonlinear elasticity of cells and reconstituted networks. Here, we report observations of a glass transition in semidilute F-actin solutions, which could hold the key to a unified explanation of these phenomena. Combining suitable rheological protocols with high-precision dynamic light scattering, we can establish a remarkable rheological redundancy and trace it back to a highly universal exponential stretching of the single-polymer relaxation spectrum of a "glassy wormlike chain." By exploiting the ensuing generalized time-temperature superposition principle, the time domain accessible to microrheometry can be extended by several orders of magnitude, thus opening promising new metrological opportunities.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Actins: chemistry
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Glass: chemistry
650 _ 2 |2 MeSH
|a Phase Transition
650 _ 2 |2 MeSH
|a Rabbits
650 _ 2 |2 MeSH
|a Rheology
650 _ 2 |2 MeSH
|a Solutions
650 _ 2 |2 MeSH
|a Temperature
650 _ 7 |0 0
|2 NLM Chemicals
|a Actins
650 _ 7 |0 0
|2 NLM Chemicals
|a Solutions
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a biopolymers
653 2 0 |2 Author
|a light scattering
653 2 0 |2 Author
|a nonlinear rheology
653 2 0 |2 Author
|a wormlike chain
700 1 _ |a Storz, T.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Glaser, J.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Merkel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Bausch, A. R.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Kroy, K.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1073/pnas.0705513104
|g Vol. 104, p. 20199 - 20203
|p 20199 - 20203
|q 104<20199 - 20203
|0 PERI:(DE-600)1461794-8
|t Proceedings of the National Academy of Sciences of the United States of America
|v 104
|y 2007
|x 0027-8424
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154408
909 C O |o oai:juser.fz-juelich.de:60039
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)94216
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21