001     60049
005     20200423204550.0
024 7 _ |a 10.1029/2007GL031813
|2 DOI
024 7 _ |a WOS:000251257100006
|2 WOS
024 7 _ |a 2128/20796
|2 Handle
037 _ _ |a PreJuSER-60049
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Geosciences, Multidisciplinary
100 1 _ |a Vereecken, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)129549
245 _ _ |a Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective
260 _ _ |a Washington, DC
|b American Geophysical Union
|c 2007
300 _ _ |a L22402
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Geophysical Research Letters
|x 0094-8276
|0 2249
|v 34
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Understanding soil moisture variability and its relationship with water content at various scales is a key issue in hydrological research. In this paper we predict this relationship by stochastic analysis of the unsaturated Brooks-Corey flow in heterogeneous soils. Using sensitivity analysis, we show that parameters of the moisture retention characteristic and their spatial variability determine to a large extent the shape of the soil moisture variance-mean water content function. We demonstrate that soil hydraulic properties and their variability can be inversely estimated from spatially distributed measurements of soil moisture content. Predicting this relationship for eleven textural classes we found that the standard deviation of soil moisture peaked between 0.17 and 0.23 for most textural classes. It was found that the beta parameter, which describes the pore-size distribution of soils, controls the maximum value of the soil moisture standard deviation.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kamai, T.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Harter, T.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Kasteel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB724
700 1 _ |a Hopmans, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Vanderborght, J.
|b 5
|u FZJ
|0 P:(DE-Juel1)129548
773 _ _ |a 10.1029/2007GL031813
|g Vol. 34, p. L22402
|p L22402
|q 34|0 PERI:(DE-600)2021599-X
|t Geophysical research letters
|v 34
|y 2007
|x 0094-8276
856 7 _ |u http://dx.doi.org/10.1029/2007GL031813
856 4 _ |u https://juser.fz-juelich.de/record/60049/files/2007GL031813.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/60049/files/2007GL031813.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:60049
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2007
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)94225
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21