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[1] Understanding soil moisture variability and its
relationship with water content at various scales is a key
issue in hydrological research. In this paper we predict this
relationship by stochastic analysis of the unsaturated
Brooks-Corey flow in heterogeneous soils. Using sensitivity
analysis, we show that parameters of the moisture retention
characteristic and their spatial variability determine to a
large extent the shape of the soil moisture variance-mean
water content function. We demonstrate that soil hydraulic
properties and their variability can be inversely estimated
from spatially distributed measurements of soil moisture
content. Predicting this relationship for eleven textural
classes we found that the standard deviation of soil moisture
peaked between 0.17 and 0.23 for most textural classes. It
was found that the b parameter, which describes the pore-
size distribution of soils, controls the maximum value of the
soil moisture standard deviation. Citation: Vereecken, H.,

T. Kamai, T. Harter, R. Kasteel, J. Hopmans, and J. Vanderborght

(2007), Explaining soil moisture variability as a function of mean

soil moisture: A stochastic unsaturated flow perspective,

Geophys. Res. Lett., 34, L22402, doi:10.1029/2007GL031813.

1. Introduction

[2] Soil moisture is a key variable controlling hydro-
logical and energy fluxes in soils. Due to the heterogeneity
of soils, atmospheric forcing, vegetation, and topography,
soil moisture is spatially variable. Understanding and
characterizing this spatial variability is one of the major
challenges within hydrological sciences. Especially the
relationship s�(h�i) between mean soil moisture content,
h�i, and its standard deviation s�, has received consider-
able attention in the hydrological community. This
relationship is important to understand the contribution
of soil moisture variability at smaller scales towards the
effective soil moisture observed at larger scales or its role
in the parametrization of, e.g., climate and watershed
models (upscaling/downscaling [e.g., Famiglietti et al.,
1999; Crow et al., 2005; Ryu and Famiglietti, 2005]).
Some studies report an increase in s� with decreasing h�i
[e.g., Bell et al., 1980; Famiglietti et al., 1998; Oldak et
al., 2002], while others report the opposite behaviour
[Famiglietti et al., 1999; Choi and Jacobs, 2007]. Re-
examination of recent experimental work [Ryu and

Famiglietti, 2005; Choi and Jacobs, 2007; Choi et al.,
2007] and of results from simulations and stochastic analysis
of water flow in heterogeneous soils [Roth, 1995; Harter
and Zhang, 1999] shows that s�(h�i) increases during
drying from a very wet stage, reaches a maximum value
at a specific or critical mean moisture content, and then
decreases during further drying (Figure 1). The observed
unimodal shape of s�(h�i) has been explained mostly
based on empirical [Hu and Islam, 1998] and/or statistical
analysis of field data [e.g., Famiglietti et al., 1998; Ryu
and Famiglietti, 2005; Choi and Jacobs, 2007]. To date,
an explicit mathematical analysis of s�(h�i) is lacking. In
this letter, we use analytical stochastic work by Zhang et
al. [1998], to show that s�(h�i) is directly related to the
soil hydraulic properties and their statistical moments and
that inverse modelling can be used to estimate these
properties from moisture data. Our results show that the
relationship between soil moisture variability and mean
moisture content is controlled by soil hydraulic properties,
their statistical moments and their spatial correlation. The
unimodal shape of s�(h�i) observed in the field and in
simulation data is well explained by existing stochastic
theories.

2. Stochastic Theory

[3] Over the past thirty years, various stochastic theories
of unsaturated water flow have been developed to predict
effective water fluxes, state variables, and hydraulic para-
meters for heterogeneous soils [e.g., Yeh et al., 1985;
Zhang, 2002]. Briefly, across a field site, the variability
in soil hydraulic parameters leads to an ensemble of
moisture retention curves, �(h), where h is the pressure
head, that typically show the largest variation of � in the
medium range of logarithmic pressure head values.
Stochastic perturbation theory predicts that when soil gets
drier the variance of both, pressure head and moisture
content increase [Harter and Zhang, 1999]. Given the fact
that �(h) is bounded between �r, the residual moisture
content and �s, the saturated moisture content, s�(h�i) is
also bounded even when the variance of the pressure head
increases to large values. This is demonstrated by numer-
ical simulations and stochastic analysis of water flow in
heterogeneous unsaturated porous media [Roth, 1995;
Zhang et al., 1998; Harter and Zhang, 1999]. Zhang et
al. [1998] derived closed form equations for the variances
and covariances of h and � and the cross-covariances
between h and hydraulic parameters in the Brooks-Corey
(BC) and Gardner-Russo equations for the case of 1D
gravity dominated unsaturated flow in mildly heterogeneous
flow domains. These equations are derived assuming
stationarity in saturated hydraulic conductivity and pressure

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L22402, doi:10.1029/2007GL031813, 2007

1Agrosphere, Institute of Chemistry and Dynamics of the Geosphere,
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head, joint-Gaussian spatial distribution of hydraulic
parameters with exponential covariance functions and
negligible correlation between the hydraulic parameters.
Despite these restrictions, the derived equation provides an
excellent tool to analyze the relationship between h�i and
s�. Using the BC equation for �(h) and the hydraulic
conductivity function [Zhang et al., 1998] the variance of
effective moisture content for 1D vertical flow is written
as:
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The parameters a1, a2, a3, b0, b1, b2, b3 are functions of
lnKs(x3), a(x3), b(x3), h(x3). a(x3) is the air entry value,
b(x3) is the pore size distribution index characterizing the
shape of the moisture retention characteristic, Ks(x3) is the
saturated hydraulic conductivity, and x3 the vertical
coordinate. �e(x3) is the effective moisture content equal

to �(x3) � �r. Further, slnKs

2 is the variance of lnKs(x3), sb
2

the variance of b, sa
2 the variance of a, and li, the

correlation length of lnKs(x3), a(x3), b(x3). In the
subsequent we will drop the coordinate symbol x3 and use
s�(h�i) rather than s�e(h�ei) for convenience.

3. Methods

[4] First, we use four typical soils (Table 1) to demon-
strate the effect of soil texture on s�(h�i). Values of the BC
parameters, hai, hbi, and hlnKsi, for the sandy loam were
obtained from Zhang et al. [1998]. The values for the other
soils were derived from soil texture data using pedotransfer
functions, PTF (‘‘Rosetta’’ [Schaap et al., 1998]), and then
fitting the BC-equation to the Van Genuchten model
obtained from Rosetta. We assumed that CVa (CV: coeffi-
cient of variation) and CVb were 30%, slnKs

2 = 1 and
correlation scales were equal to 25 cm based on field data
[e.g., Russo and Bresler, 1981; Mallants et al., 1996;
Schaap et al., 1998]. �r and �s were assumed to be constant.
Second, the sensitivity of s�(h�i) to the variability in soil
hydraulic parameters in (1) was investigated. Third, we used
(1) to estimate hai, hbi, sa

2 , sb
2 and slnKs

2 from an artificial,
computer-generated s�(h�i) data via inverse modelling. The
inverse model was based on least-squares optimization with
the Levenberg-Marquardt algorithm (MATLAB, 2007).
Assumptions about �r, �s, la, lb and llnKs

were as above.
The inverse modelling was performed using the loamy sand
(Table 1) and by generating synthetic datasets of s�(h�i).
White noise (N(0, 1)) was added to the computed value of
s�(h�i). Six noise levels were used: 0%, 1%, 2%, 3%, 4%
and 5%. For each level, ten realizations were obtained,
inverse modelling was performed, and average parameter
estimates and estimation variances were calculated. The 0%
noise case was used to test the algorithm. Fourth, we
calculate s�(h�i) using BC-data for eleven textural classes
(Table 2) according to Rawls et al. [1982] and Cosby et al.
[1984] to find the relation between moisture content and
smax, the max. standard deviation. Fifth, we show an
application to field data of s�(h�i) [Choi et al., 2007].
Again, �r and �swere obtained based on available soil texture
data using PTF. Values of hai, hbi, sa

2 , sb
2 and slnKs

2 were
estimated by applying field texture data to Table 2.

4. Results and Conclusions

4.1. Effect of Soil Texture on s�� (hhhh���iiii)

[5] Finer textured soils (silt loam, clay loam) have a clear
peak in s�(h�i) whereas the sandy loam soil and the loamy

Figure 1. Soil moisture variability with respect to mean
soil moisture content for the measurements made by Choi
et al. [2007] on field sites WC11 and WC13. Symbols
demonstrate results obtained with numerical simulations
[Roth, 1995; Harter and Zhang, 1999]. The dashed line
represents the theoretical sq(h�i) (1) based on Table 2
values for the soil of Choi et al. [2007]. Actual sa

2 and sb
2 at

the field site may be smaller than estimated from Table 2
leading to the high values for the theoretical s�(h�i).

Table 1. Brooks-Corey Parameters of the Example Soilsa

Sandy
Loam

Loamy
Sand

Silt
Loam

Clay
Loam

qr [cm
3 cm�3] 0 0.057 0.067 0.095

qs [cm
3 cm�3] 0.5 0.41 0.45 0.41

a [cm�1] 0.022 0.177 0.026 0.025
b 1.738 1.07 0.394 0.292
slnKs

2
1 (0.1, 0.5, 1)

la, lb, llnKs
[cm] 25 (10, 40, 80)

aThe variance of a and b was calculated for a CVof 0.3. Values used for
the sensitivity analysis are given in parentheses.
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sand soil show a steady decrease in s�(h�i) from wet to dry
(Figure 2). Therefore, we may observe different behavior in
s�(h�i) depending on mean soil moisture status and on soil
hydraulic properties. The CV�(h�i) of the sandy soil
increases as the soil dries and reaches its maximum value
near the residual moisture content (Figure 2). The other soils
show a more unimodal shape in CV�(h�i).

4.2. Sensitivity of s�� (hhhh���iiii) to Soil Hydraulic Properties

[6] Variability in a affects s�(h�i) mainly at high soil
moisture regardless of soil type (Figures 3a, 3d and 3g).

However, the sensitivity is smaller for the finer textured
clay loam soil. The pronounced sensitivity of sa

2 at high
soil moisture suggests that soil moisture data under a wet
regime are important for estimating this parameter. All
three soils show that s�(h�i) is very sensitive to sb

2 at
moderate soil moisture content, with the largest sensitivity
found for the silt loam soil (Figures 3b, 3e and 3h). The
effect can be explained by the fact that b is a measure of
the pore size distribution of the soil. It therefore affects the
shape of the entire moisture retention characteristic, par-
ticularly in the moisture range where most variation in soil

Figure 2. The sq(h�i) and the corresponding CV for four different textural classes using equation (1). Parameter
specifications are given in Table 1.

Table 2. Brooks-Corey Parameter for Different Textural Classesa

qs qr a, cm�1 sa
2 b sb

2 slnKs

2

Sand 0.437 0.02 0.5599 8.7071 0.694 0.163 0.152
loamy sand 0.437 0.035 0.3966 3.5986 0.553 0.102 0.260
sandy loam 0.453 0.041 0.0886 0.0330 0.378 0.057 0.449
Loam 0.463 0.027 0.1425 0.1379 0.252 0.028 0.397
silt loam 0.501 0.015 0.0709 0.0282 0.234 0.017 0.303
Sandyclayloam 0.398 0.068 0.0494 0.0123 0.319 0.058 0.292
clay loam 0.464 0.075 0.0511 0.0117 0.242 0.029 0.348
siltyclayloam 0.471 0.04 0.0463 0.0085 0.177 0.019 0.372
sandy clay 0.43 0.109 0.0508 0.0152 0.223 0.031 0.109
silty clay 0.479 0.056 0.0400 0.0078 0.15 0.012 0.476
clay loam 0.475 0.09 0.0371 0.0069 0.165 0.016 0.384

aParameters as given by Rawls et al. [1982]. The variance of lnKs is obtained from Crosby et al. [1984]. The a values given by Rawls et al. [1982] were
statistically transformed to represent its inverse value used in equation (1).
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Figure 3. (a, d, g) The effect of variability in a on soil moisture variability for the loamy sand, silt loam, and clay loam
soil using five different values for the CV. Similar analysis is shown for the parameter (b, e, h) b, (c, f, i) lnKs, and (k, l, m)
vertical correlation length of the Brooks-Corey parameters. (n, o) The effect of an increased coefficient of variation for sa

2

and sb
2 (CV = 0.9) on the sensitivity of sq(h�i) for the correlation scale.
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moisture occurs. The impact of b on s�(h�i) at moderate
soil moisture was indirectly observed by Famiglietti et al.
[1998] who found a strong correlation between the vari-
ability in surface soil moisture content and clay content
under dry conditions. Cosby et al. [1984] also showed that
clay content and b are strongly correlated. The sensitiv-

ities of s�(h�i) to sa
2 and sb

2 are complementary: Near

saturation, the sensitivity to sa
2 is larger and diminishes as

the soil dries out whereas the sensitivity of s�(h�i) to sb
2

is small near saturation and increases as the soil dries out
(e.g., Figures 3d and 3e). Upon further drying, however,
the effect of sb

2 decreases as soil moisture is approaching
residual moisture content. Variability in slnKs

2 mainly
affects the wet part of s�(h�i) (Figures 3c, 3f and 3i).
This effect was also observed by Famiglietti et al. [1998]
who found that variability in soil moisture content is
controlled strongly by porosity and hydraulic conductivity
under wet conditions but not under drier conditions. This
is supported by our calculations, which show a decrease in
the sensitivity of s�(h�i) to variability in slnKs

2 as the soil
is drying. In general, the sensitivity of s�(h�i) to variabil-
ity in lnKs seems smaller compared to its sensitivity to sa

2

and sb
2. The sensitivity of s�(h�i) with respect to the

correlation scale is low (Figures 3k, 3l and 3m). More-
over, the sensitivity of s�(h�i) to correlation scale seems
to be related to the magnitude of sa

2 and sb
2 (Figures 3n

and 3o). The larger sa
2 and sb

2, the more pronounced is
the effect of correlation scale on the soil moisture vari-
ability. The largest effect is observed in the wet part of the
soil moisture range.

4.3. Inverse Estimation of Soil Hydraulic
Parameters From s�� (hhhh���iiii)

[7] For zero noise, the estimated soil hydraulic parame-
ters from the synthetic s�(h�i) were in perfect agreement
with their ‘‘true’’ values (not shown). Excellent agreement
of estimated with ‘‘true’’ parameters was also found for low
noise levels (Figure 4a). At all noise levels, good estimates
of a, b and slnKs

2 were obtained from the synthetic s�(h�i)
data. Maximum deviations from ‘‘true’’ values range
between 10% and 25% (Figures 4b and 4c). Higher order
moments sa

2 and sb
2 show deviations larger than 30% at 2%

noise and quickly increase with noise level. Estimation
variances of the parameters also rapidly increase with noise
level (Figure 4c).

4.4. Relation Between Mean Moisture
Content and smax

[8] The largest observed moisture variability is a function
of soil texture (Table 3). s�(h�i) is typically largest in the
mid-range of soil moisture content for all textural classes
except ‘‘sand’’, for which the maximum of s�, smax, value is
at air entry. For the finer textured soils, smax occurs at mean
soil moisture values ranging from 0.18 to 0.23 (Table 3).
This theoretical result based on mechanistic soil-physical
analysis corresponds well with Ryu and Famiglietti [2005]
who experimentally found that s�(h�i) tends to peak around
a value of 0.2.

4.5. Comparison of Predicted and Measured s�� (hhhh���iiii)

[9] An application of this approach to field data shows
good agreement between measured s�(h�i) and the theoret-
ical s�(h�i) curve (Figure 1) obtained by applying field
texture data to Table 2. These results demonstrate that
measured s�(h�i) may be used to derive soil hydraulic
parameters. Further in-depth analysis and field testing is
needed to evaluate the full potential of this approach,
particularly when including the forcing through precipita-
tion and vegetation. Also, it is generally accepted that the
BC model has limited value in the field, particularly near
saturation. Improved stochastic theories based on the Van
Genuchten model or similar more realistic descriptions of
the soil moisture characteristic might be valuable in im-
proving estimation of hydraulic parameters from measured
s�(h�i) curves.

Figure 4. (a) Fit to the data with 5% measurement noise. (b) Normalized deviations from optimal parameter values.
(c) Normalized estimation values with respect to sb

2.

Table 3. Maximum Standard Deviation in Function of Soil Type

and Moisture Contenta

smax q at smax s at Air Entry, 1/a

Sand 0.203 0.41 0.191
loamy sand 0.056 0.153 0.041
sandy loam 0.089 0.168 0.042
Loam 0.103 0.172 0.032
silt loam 0.098 0.196 0.029
Sandy clay loam 0.089 0.179 0.024
clay loam 0.100 0.210 0.025
Silty clay loam 0.123 0.200 0.022
sandy clay 0.092 0.223 0.011
silty clay 0.114 0.211 0.021
clay loam 0.108 0.231 0.018

aMaximum standard deviation, smax; moisture content, q.
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