FORSCHUNGSZENTRUM JULICH GmbH
Julich Supercomputing Centre
D-52425 Jiilich, Tel. (02461) 61-6402

Technical Report

CESRI 2007 Research Report
Implementation and Validation of the
Extended Controlled Logical Clock

John C. Linford

FZJ-JSC-1B-2007-11

November 2007
(last change: 02.11.2007)

Contents

Abstract
Project Proposal and Overview

The Extended Controlled Logical Clock

w

3.1 The Clock Condition
3.2 Forward Amortization e e
3.3 Backward Amortization
3.4 Collective Operations

NN o oa

4 Implementation

5

6

4.1 Forward Replay and Forward Amortization
4.2 Backwards Replay and Backwards Amortization

Acknowledgements

Biography

Bibliography

15

17

19

CONTENTS

List of Figures

3.1 Algorithm for backward amortization.

4.1 Program ClassDiagram. i .

4.2 Datapoints Required During Backwards Amortization

LIST OF FIGURES

List of Tables

4.1 Event sequences recorded for a few typical MPIl opersttion

4.2 Timestamps exchanged during forward amortization.
4.3 Timestamps exchanged during backward amortization

Vi

LIST OF TABLES

Chapter 1

Abstract

CESRI is a fellowship opportunity sponsored by the Nati@zence Foundation and managed by
the Institute of International Education for U.S. gradusttedents in science and engineering who
are seeking a quality hands-on international researchriexpe in Austria, the Czech Republic,
Germany, Hungary, Poland, and Slovakia. The Extended GledrLogical Clock is a method for
correcting invalid timestamps in event trace files duringtpoortem performance analysis. Under
the CESRI 2007 program, | developed a highly-scalable imphgation of the Extended Controlled
Logical Clock for use in thescALASCA performance analysis toolkit and verified the method’s
applicability to real-world supercomputing applicationshis document describes the theory of
the Extended Controlled Logical Clock and the design of dligigcalable implemenation of the
algorithm. It also gives a narative description of the pssfenal impact of the CESRI fellowship,
and the cultural and personal experiences which made myatsrae2007 CESRI fellow exceptional.

CHAPTER 1. ABSTRACT

Chapter 2

Project Proposal and Overview

CESRI is a fellowship opportunity sponsored by the Nati@zence Foundation and managed by
the Institute of International Education for U.S. gradusttedents in science and engineering who
are seeking a quality hands-on international researchriexpe in Austria, the Czech Republic,
Germany, Hungary, Poland, and Slovakia. CESRI hopes taovethe expertise of the awardees as
scientists, help them think and analyze on a broader, glebel, build individual and institutional
partnerships, and build dialogue between the scientificngonity in the U.S. and Central Europe.
My research proposal for the CESRI 2007 program was to ‘iaflevscalability, portability and
usability problems in high-performance computing sofevaystems.” | achieved this by improv-
ing the SCalable performance Analysis of LArge SCale Appians 6CALASCA) toolkit, which
performs post-mortem analysis of message-passing afiptisal implemented the Extended Con-
trolled Logical Clock as part ofCALASCA and instrumented two multiphysics air quality models
with scALASCA, demonstrating its applicability to massively-scalalbigh-performance applica-
tions.

The purpose of this document is twofold. First, as a repontngrexperiences as a CESRI 2007
fellow, it discusses the professional and academic gainshadame through the CESRI program
and the personal experiences | had as an American reseafwioad. Second, as a technical report,
this document gives a detailed explanation of the ExtendeatrGlled Logical Clock ECLC) in
terms of thescaLASCA event model, and describes a highly-scalable implementati theecLc

for use iINSCALASCA.

The document is organized as follows. An introduction toExéended Controlled Logical Clock
is given in Chapter 3, and a description of the implementaiagiven in Chapter 4. The narative
description of my personal and professional experienceGE2RI fellow is found in Chapte??
and ChapteR?.

CHAPTER 2. PROJECT PROPOSAL AND OVERVIEW

Chapter 3

The Extended Controlled Logical Clock

Post-mortem analysis of message-passing applicationsddpgomeasurements of wait-times. An
analysis of these wait-times can detect system errors agtgn design flaws in large-scale su-
percomputing applications, but the accuracy of the amalgspends on the comparability of event
timestamps taken on different processors. An inaccunaestiamp will not only dialate the interval
between events, but may alter the logical order of eventsiog a message to appear to be received
before it is sent. This is a violation of tlbock conditionwhich requires that when an evenivith
timestampC'(e) precedes an event with timestampC'(¢’), thenC'(e) < C(¢').

Unfortunately, processor clocks are often entirely nonesyonized or only synchronized in dis-
joint partitions (i.e., an SMP-node or multicore-chip). o€k synchronization protocols, such as
NTP [4], are typically too inaccurate for our purposes, la#Lening that all local clocks on a paral-
lel machine run at different but constant speeds (i.e.tJritheir time can be described as a linear
function of the global time. This approach is used in theitigudibrary of thescALASCA toolkit

[2], which performs offset measurements between all loladks and an arbitrarily-chosen master
clock once at program initialization and once at programlization. However, as the assumption
of constant drift is only an approximation, violations oétblock condition may still occur.

Thecontrolled logical clockcLc) [5], an enhancement of Lamport’s logical clock [3], is a hoat

to retroactively correct timestamps violating the clockdition. The algorithm requires times-
tamps with limited errors (achievable through weak preshyonization) and a globally-unified
tracefile. Since modifying individual timestamps mightldia local time intervals and even in-
troduce new violations, the correction considers the cdrié the modified event by stretching
the local time axis in the immediate vicinity of the affectexknt. Theextended controlled logi-
cal clock (EcLC) [1] extends the controlled logical clock to apply to cotiee communication to
provide a more complete correction of realistic messagsipg traces. In addition to broader ap-
plicability, the EcLc algorithm operates on distributed trace files and therefoades to thousands
of application processes.

3.1 The Clock Condition

A clock condition violatioroccurs if the receive event of a message has an earlier impghan
its matching send event. That is, thappened-beforeelatione — ¢’ [5] between two events
ande’ with their respective timestamps(e) andC'(e’) does not hold. A clock condition violation
between two events is defined as:

Je, e :e— e ANC(e) > C(e). (3.1)

The cLc algorithm restores the clock condition using happened+ieffelationships between dis-
tributed events derived from point-to-point communicatevent semantics. More precisely, if the

6 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

condition is violated for a send-receive event pair, theikecevent is moved forward in time. This
adjustment is calletbrward amortization To preserve the length of intervals between local events,
events immediately preceding the corrected event are miovecrd as well. This adjustment is
calledbackward amortizationA detailed description of theLc algorithm and a review of further
synchronization approaches can be found in [5], [6], and [1]

3.2 Forward Amortization

Forward amortization is the process by which timestampsraneed forward to maintain the clock
condition. Timestamps computed by thec are denoted by the symbslC’. LC" is modeled with

t as the wall clock time and@(¢) as the global time to which the process cloCk$t) (i = 0..n —1)
are synchronized. Nexi is the number of processesj.; is the j*" event on process and so
E= {e§|i =0.n—1,7 = 0..jmax(7) } is the set of all events in the trace. The set of matching send
and receive pairs is defined with

M = {(ek,e)|el. = send event”, = matching receive eveht (3.2)

Note that the send event always marks the beginning of a gee@ition whereas a receive event
marks the end of a receive operatiefis an internal event if it is neither a send nor a receive event
0; is the minimal difference between two events on prodessd . ; is the minimum message
delay of messages from procésto process. Finally, »yg' is a control variable withyg € [0,1]. For
each procesd,C! is defined as

HlaX(LO];(ei) + Lk 4

L7 + 6,

LCJ(el ™) + 7] (Cilt(e]) —Cu(t(e] 1)),

LOYel) = Gilt@)) 1 3 (el € M (33)
max(LC!(el ™) + &,

LCY(el ™) + 1 (Cit(e])) - Cit(el ™M),

)

Ci(t(e)) otherwise. (3.4)

)

As can be seen, the algorithm consists of two equations. tlequés.3) adjusts the timestamps
of receive events while Equation (3.4) modifies timestanfaternal and send events. Note that
for each process, the ternis/ (¢! ') + &; and LC!(e! ") + 7 (Ci(t(e])) - Ci(t(el 1)) must be
omitted for the first eventj = 0).

Through the terrr(]i(t(eg)) in Equation (3.3) and Equation (3.4), the algorithm ensuhes$ a
correction is only applied if the trace violates the clockdition. The new timestamps satisfy the
clock condition, since the termc,g(eg)wk,i in Equation (3.3) ensures thﬁC’(eg) is put forward
compared tcCi(t(e{)) if needed in case of a clock condition violation. To ensua the clock
does not stop after a clock condition violation, the telb@/ (e ") + ~7 (Ci(t(e!)) — Ci(t(e ™))

in Equation (3.3) and Equation (3.4) approximates the thmadf the original communication after
a clock condition violation. Rabenseifner describes thetrod mechanism ang? in more detail

in [6].

3.3. BACKWARD AMORTIZATION 7

3.3 Backward Amortization

Backward amortization is applied to smooth jump discorities caused during forward amortiza-
tion. This is done by distributing a jump of siz&t over an amortization interval 4 preceding
the violating receive event by using a process-local, piesmlinear correction. In Figure 3.1, the
horizontal axis representsC?, which is equal toLC! (i.e., the state after forward amortization)
but without the jumpAt at eventr. The vertical axis shows offsets faC? after applying different
stages of backward amortization.

A Clocks - LC? . on) Clocks:— —LC;
of process i (LC'm(Em’) - Him) —> ® ,';.o/" | = . = LGlideal backward amortization
_- ';,...'" | in the absence of conflicting sends
X coscass .A . . .
Corresponding receive Lo LG" piece-wise .I|ne.ar
event,i.e., (ss.en’) EM .~ o I backward amortization
- -~ oy || Events: r = Receive event
P _..--@ | s = Send event
s . i = Internal event
-7 pe : : , 1
‘.é';’"_'@-cz -———— — . — — -~ ; Jump At due to LC’w(ex)+uixin Eq.(3)
T T T T T | T gl
. i Sy 1 Sy S3 1 o LC;
- Amortization interval La o with LCP := LC’i without jump At

Figure 3.1: Algorithm for backward amortization.

In order to preserve the clock condition, the correction thma$ advance the timestamps of send
events farther thalkC},, — 1, of the corresponding receive everf} of a processn. These
upper limits are shown as circled values above the locatifrike send events in Figure 3.1. If
these limits are smaller than the dashed-dotted line (heesemtss; and ss), then a piecewise
linear interpolation function must be used, represented dwtted line in Figure 3.1. If there are
no violating send events in the backward amortization vileof a process, then an ideal linear
interpolation can be used (the dash-dotted line in Figut® ¥or each receive event with a jump,
the backward amortization algorithm is applied indepetiglet there are additional receive events
inside the amortization interval during such a calculastep, then these events can be treated like
internal events, because advancing the timestamp of aveeeeént further cannot violate the clock
condition.

3.4 Collective Operations

A single collective operation can be considered as a coniposif many point-to-point commu-
nications. That is, ifS and R denote the set of send and receive events in a collectivextqer
instancei, respectively, then for each call to a collective operattbe set of all send-receive pairs
M is enlarged by adding x R.

1-to-N: One root process sends its dataMother processes. Example #Mel _Bcast ,MPl _Scatter,
andMPl Scatt erv. S only contains the send event of the root process, wheReaantains re-
ceive events from all processes of the communicator withia ldagth greater than zero.

N-to-1: One root process receives its data frdhprocesses. Examples &l _Reduce, VPl _Gat her
andMPI _Gat herv. R only contains the receive event on the root processs the set of send
events on all processes of the communicator with a dataHempgtater zero. Given that the root
process is not allowed to exit the operation until the lastpss enters the operation, the latest en-
ter event is the relevant send event to fulfill the collectaek condition. Hence, if contains more
than one element, the terIrC,g(eﬁv) + g, in Equation (3.3) must be replaced by the maximum of
LC}(€}) + u,; over allel, € S.

8 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

N-to-N’: All processes of the communicator are sender and receixamples aréPl _Al | r educe,
MPI _Al' | gat her,MPI _Al' |l t oal | ,andMPI _Bar ri er with N’=N, and the variable length op-
erationsMPl _Reduce_scatter, MPl _Al | gat herv,andMPl _Al Il toal |l v. S andR are all
enter and collective exit events whose processes cordribptit data or receive output data. For a
calltoMPI _Barri er, all processes of the communicator contributeStand R.

Special casesFor MPl _Scan andMPI _Exscan, the set of messages addedMbcannot be ex-

pressed as the Cartesian prodfick R. These cases are currently ignored byglee C algorithm
and therefore are not handled in our implementation. Thistfanality is a proposed future work.

Chapter 4

Implementation

The EcLC algorithm was implemented as part of theALASCA performance analysis toolkit, so
the implementation is described in terms of #eaLASCA event model. The Parallel Event Analy-
sis and Recognition LibraryPEARL) [2] provides the necessary classes and methods to praogss a
operate on an event stream taken from a parallel trace fileed&ah individual eventSCALASCA
records at least a timestamp, the location (i.e., the ps)cagising the event, and the event type. De-
pending on the event type, additional information may bephe@. The event model distinguishes
between programming-model independent events, such esrgnand exiting code regions, and
events related to MPI operations. The latter include eveagisesenting point-to-point operations,
and the completion of collective operatiori3ollective exievents are specializations of normal exit
events carrying additional information (i.e., the comnuaidr) that allows us to identify concurrent
collective exits belonging to the same collective operatistance.

Because th@EARL encapsulation o§CALASCA events does not provide methods for determining
the logical type (i.e. role) of an event in an event streanetafpredicate functions to determine
the logical type of an event, based on the event type and egilerwhere the event was produced,
were created. Every possible event is abstracted into otteexd logical types: send, receive, and
internal. For example, an “enter” event may be the start afleective communication operation
and therefore should be considered a “send” event when mingrt This abstraction makes it
possible to express collective operations as compositbnoint-to-point operations. Table 4.1
gives the event sequences recorded for a few typical MP ktipes.

Table 4.1: Event sequences recorded for a few typical MPI operations.

Function name \ Event sequence
MPI _Send() (enter, send, exit)
MPI _Recv() (enter, receive, exit)

MPI _Al'l reduce() (enter, collective exit) for each participating process

PEARL's parallel replay functionality is used to process eaclalld@cefile in parallel, similar to
the approach used by tlecALASCA tracefile analyzer (see [2] for details). The parallel rgpla
approach has several important advantages. First, a sgighally-unified tracefile is not required,
which greatly improves scalability. Secondly, it requinesy little overhead, so machines with
low per-process memory (e.g. IBM BlueGene/L) are supportedperform a parallel replay, each
process reads the local tracefile into memory and travelsesvent stream with an instance of
the PEARL Event iterator class. This approach requires exactly the samdeaunf processes as
was used in the original application and guarantees stifadgual to or greater than the original
application scalability. For each communication eventhie stream, the following algorithm is
applied:

1. Determine the logical type of the event based on eventdppdecode region

2. If the event is a logical “send” event:

O©C O NOOUT D WNPRF

el ol
WN RO

14
15
16

10 CHAPTER 4. IMPLEMENTATION

(a) Perform a local forwards amortization
(b) Forward-replay the communication so the receiving @sschas the correct remote
timestamp
(c) Backwards-replay the communication and store the remoiestamp in a ring buffer
3. If the event is a logical “receive” event:

(a) Forward-replay the communication so the sending psolecas the correct remote times-
tamp

(b) Perform a local forwards amortization
(c) Backwards-replay the communication and store the remoiestamp in a ring buffer
(d) Detect any jump discontinuity and perform backwards iizetion if required

4. If the event is a logical “internal” event: Perform a lof@wards amortization

The control mechanism used for the extended controlleccdbgilock requires a global view of
the trace data to calculatg. Establishing a global view of the trace data is not feasitita the
replay-based approach since communication would be djftir every single event. This can be
solved by performing multiple passes until the maximumre¢ns below a predefined threshatd

In this implementatiory is fixed aty = 0.99, but implementing the iterative control mechanism is
trivial and will be done in future work.

At this time, thesCALASCA cannot record measurements of communication latency anignunn
time between local events. Itis impossible to calculateguecess) andy without this information,
so the current implementation used fixed values ef 1.0 x 10~ andu = 1.0 x 10~%. Extending
SCALASCA andPEARL to make such measurements available is a topic of currestirets, and the
EcLC implementation is designed to accept these values as paaméen they become available.

Listing 4.1: UsingSynchr oni zer with PEARL

/I Initialize global definitions

GlobalDefsx defs =new GlobalDefs (archive);

[/l Prepare the local trace

LocalTrace< trace =new LocalTrace ¢defs, archive, rank);
!/ Make sure calltree IDs are unified
PEARL.mpi_unify_calltree xdefs);

[/l Preprocess event timestamps

trace—>preprocess () ;

/I Set up callbacks for events

Synchronizer sync(rank);

CallbackManager fwdManager;

fwdManager . registercallback (ANY, PEARLcreatecallback(&sync, &
Synchronizer :: amortize));

[/l Perform the replay
PEARLforward.replay (xtrace , fwdManager, NULL);

Figure 4.1 shows the program class diagram. That r ol | edLogi cal Cl ock class encap-
sulates the Controlled Logical Clock. The member varialdkelst a, mu, andganmma correspond
to 4, i, and+y in Equations 3.3 and 3.4. Theal ue member variable is the current clock value.
The member functionanorti ze f orwar d.i nt er n andanorti ze f orward.recv corre-
spond to Equations 3.3 and 3.4, respectively. The defimitafrithese functions are shown in List-
ing 4.2. TheRi ngBuf f er class provides an optimized, light-weight, templated -tdfer class
to store remote timestamps for use during backwards amtidiz Memory inRi ngBuf f er is

11

RingBuffer
- buff : TYPE
- h:uint32_t
- count : uint32_t
+ RingBuffer(hd : uint32_t)
+ push(x : TYPE)
+ operator [](i : uint32_t) : const TYPE&
+ size() : uint32_t

+recvBuff,

Synchronizer

- MAX ERR : const double

- myRank : int

- prevEviT : timestamp_t

- firstEVtT : timestamp_t

- recvBuff : RingBuffer< timestamp_t >

- clc : ControlledLogicalClock

+ Synchronizer(r : int)

+ amortize(cbmanager : const CallbackManager&, user_event : int, event : const Event&, cdata : CallbackData*)
- lowercase(str : const string&) : string

- isSend(event : const Event&) : bool

- isRecv(event : const Event&) : bool

- isOnRoot(event : const Event&) : bool

- isNxN(event : const Event&) : bool

- isNx1(event : const Event&) : bool

- is1xN(event : const Event&) : bool

- fwd_replay_send(sendEvt : const Event&)

- fwd_replay_recv(recvEvt : const Event&) : timestamp_t

- bkwd_replay_send(sendEvt : const Event&) : timestamp_t
- bkwd_replay_recv(recvEvt : const Event&) : timestamp_t
- amortize_recv(event : const Event&)

- amortize_intern(event : const Event&)

- bkwd_amortize_recv(recvEvt : const Event&, bk : timestamp_t)

+clc

ControlledLogicalClock

value : timestamp_t
delta : timestamp_t
mu : timestamp_t
gamma : double

+ ControlledLogicalClock()

+ amortize_forward_intern(curEvtT : const timestamp_t, prevEVtT : const timestamp_t) : timestamp_t
+ amortize_forward_recv(curEvtT : const timestamp_t, sendEVtT : const timestamp_t, prevEViT : const timestamp_t) : timestamp_t
+ get_value() : timestamp_t

+ set_value(v : timestamp_t)

+ get_delta() : timestamp_t

+ set_delta(d : timestamp_t)

+ get_mu() : timestamp _t

+ set_mu(m : timestamp_t)

+ get_gamma() : double

+ set_gamma(g : double)

Figure 4.1: Program Class Diagram.

o0 hw

(00]

10

12 CHAPTER 4. IMPLEMENTATION

statically allocated, making this class both highly effitiand suitable for low-memory architec-
tures. (Although dynamic memory allocation would normdilé/preferable in a restricted memory
environment, we take advantage of the fact that the buffdrbaifilled to capacity for the ma-
jority of the program’s execution time and so avoid the oeaxh of a dynamic data structure.)
The Synchr oni zer class encapsulates the Extended Controlled Logical Cld¢le my Rank
member variable records the current process rank (i.e.titeda which is identical to the pro-
cess rank of the application process which produced the tcaze file. Thepr evEvent Ti ne
andf i r st Event Ti me member variables corespond £6/(¢/ ') and LC!(€)), respectively, in
Equations 3.3 and 3.4. Thanorti ze member function is a callback function for use with the
PEARL replay mechanism, as shown in Listing 4.1. | discuss theratf@mber functions in more
detail in Chapters 4.1 and 4.2.

Listing 4.2: C++ implementation of Equations 3.4 and 3.3

timestampt amortizeforward_intern(timestampt curgEvtT ,
timestampt prevEvtT) {
value = std::max(value + delta, std::max(value + gammg
CUrEvtT — prevEvtT), curEvtT));
return value;

}

timestampt amortize.forward_recv (timestampt curEvtT ,
timestampt prevEvtT) {
timestampt internT = amortizeforward_intern (curgvtT , prevEvtT
);
value = std::max(sendEvtT + mu, internT);
return internT ;

}

When performing backwards amortization, both/a@y’ which accounts only for local time axis di-
lation and ar.C which also considers remote timestamps are requaedr t i ze_f or war d_i nt er n
andanorti ze f orwardrecv setval ue to LC! and returnLC?, but in the case of Equa-
tion 3.4,LC? = LC.

4.1 Forward Replay and Forward Amortization

Table 4.2: Timestamps exchanged during forward amortization.

Type of operation | timestamp exchanged MPI function
1-to-1 timestamp of send event WPl _Send

1-to-N timestamp of root enter event MPI Bcast
N-to-1 max(all enter event timestamps) MPl _Reduce
N-to-N’ max(all enter event timestamps) MPI _Al | r educe

The first step in replaying a communication is the forwardagpvhich is performed bfywd_r epl ay_send
andf wd_r epl ay_r ecv. Here the process which was the sender in the original ayijgit sends

the timestamp of the send event to the process which was ¢be/ee in the original application.
Communication proceeds in the same direction as it did irotiginal application (i.e. forward).

This is all the communication required to compute forwarddimation, since only local times-
tamps and at most one remote timestamp is required. Dependithe type of the original com-
munication operation, the timestamps are exchanged ugfiegetit MP1 function calls as listed in

Table 4.2.

4.2. BACKWARDS REPLAY AND BACKWARDS AMORTIZATION 13

Forward amortization is performed layrorti zer ecv oranorti ze. nt er n, depending on

if the event is a receive event or an internal event (recalt fend events are considered inter-
nal events).anorti zer ecv invokes backwards amortization if a clock condition viaatis
detected after forward amortization has been performed.

4.2 Backwards Replay and Backwards Amortization

Table 4.3: Timestamps exchanged during backward amortization.

Type of operation | timestamp exchanged MPI function
1-to-1 Implementationtimestamp of receive eventMPl _Send

1-to-N min(all collective exit event timestamps) MPI _Reduce
N-to-1 timestamp of root collective exit event MPI Bcast
N-to-N min(all collective exit event timestamps) MPI _Al | r educe

The second part of a communication replay is the backwaidygphich is performed bigkwd_r epl ay send
andbkwd_r epl ay_r ecv. Here the process which was the sender in the original agiit re-

ceives the timestamp of the receive event from the procegshwias the receiver in the original
application. The roles of sender and receiver are reverseeference to the original application,

so the communication proceeds in a “backwards” directioepdhding on the type of the origi-

nal communication operation, the timestamps are exchangjed different MPI function calls, as

listed in Table 4.3.

A Clocks - LC®
h LC' (e Np — > C
of process i C mom '-dm. : <)
(Corresponding Coth o Clocks:
receive event) RGN | .
. " »~° | - LCi
- ol
cnl_/ ‘ s | =+ LC'ideal backward
/‘/ o | - At amortization
c -~ b, /'/ [ket LC* piece-wise linear
*] 1 i i
/1|‘/ ________@ = | . backward amortization
e T : ! I At
e o —— S i) -
| | | | [o
[%0 bl v bn n+1 l})k '
L \ J
A Ad
LA

Figure 4.2: Datapoints Required During Backwards Amortization

Backwards amortization is performed bykwd_anorti zerecv. The datapoints required to
calculate backwards amortization are described in Figirehe backward amortization algorithm

is as follows:
1. Lete,, be an event preceding the event which caused\ttimeline jump. (imestamp(e,) =
bn)
2. Calculate the ideal linearly interpolated timestamp for e,,.

w

Lettimestamp(e,) := ¢,
4. If e, is a send event ang, is greater than the receive event timestamp for this senck,eve
then a piecewise linear interpolation is calculated a®vat

(a) Letc, equal the receive event timestamp
(b) Lete, be the event directly following evea, (i.e. e, 1)

14 CHAPTER 4. IMPLEMENTATION

(c) Calculate the piecewise linearly interpolated timesgigc,,, for €,
(d) Lettimestamp(éy,) := ¢,
(e) Lete, :=e, +1
() If timestamp(é,,) == ¢, continue from Step 5. Otherwise, continue from Step 4a
5. Lete, :=¢,_1
6. If timestamp(e,) == by, END backwards amortization. Otherwise, continue fronpSte
Equations 4.2 - 4.8 describe how the datapoints in Figurar Zalculated.

At = Cr — bk A_t = bB — bn (4.1) (42)
La = by — by L =bp—b, (4.3) (4.4)
_ %bo +cp _

b, = timestamp(ey,) bp = 57— + At (4.5) (4.6)
LA+1

Ly La

Chapter 5

Acknowledgements

Daniel Becker of Forschungszentrum Jilich is the primaohiéect of the Extended Controlled
Logical Clock, which was first formulated in [1]. He oversawy mesearch in Julich and was my
main interface to the researchers and resources there. Profelix Wolf leads thescALASCA
research and development group and provided me with ev@griymity to improve my experience
in JUIich.Agnes Vajda, Chris Medalis, and Vijay Renganathan were mgRIEontacts and excel-
lent hosts. This work would not have been possible without Bamie Bishop of the Department
of Foreign Languages at Virginia Polytechnic Institute &tate University.

15

16

CHAPTER 5. ACKNOWLEDGEMENTS

Chapter 6
Biography

John C. Linford is a PhD student of computer science at Viagliech. He received his Bachelor’s
of Computer Science and Mathematics in 2005 from Weber Shaiteersity in Ogden, Utah. John
graduated from Weber State as the Crystal Crest Scholae ofdhr, the school’s highest academic
honor, and was an adjunct professor of computer scienceebbéminning his graduate studies at
Virginia Tech. Under Dr. Adrian Sandu, John is studying hpgihformance computing systems and
advanced multiphysics models, such as air quality and weatindels. John is a member of the
Virginia Tech Triathlon Team and competed in the 2007 USAomat triathlon championship. His
interests include cooking, playing piano, and art.

17

18

CHAPTER 6. BIOGRAPHY

Bibliography

[1]

[2]

[3]
[4]
[5]

[6]

D. Becker, R. Rabenseifner, and F. Wolf. Timestamp symization for event traces of large-
scale message-passing applications. Pioc. 14th European PVM/MPI ConferencBaris,
France, September 2007. Springer.

M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalablerpbel trace-based performance
analysis. InProc. 13th European PVM/MPI Conferenddonn, Germany, September 2006.
Springer.

Leslie Lamport. Time, clocks, and the ordering of eventa distributed systemCommunica-
tions of the ACM21(7):558-565, July 1978.

D. L. Mills. Network Time Protocol (Version 3). The Inteet Engineering Task Force - Net-
work Working Group, March 1992. RFC 1305.

R. Rabenseifner. The controlled logical clock - a glotiale for trace based software moni-
toring of parallel applications in workstation clusters.Aroc. 5th EUROMICRO Workshop on
Parallel and Distributed (PDP’97)pages 477-484, London, UK, January 1997.

R. Rabenseifner. Die geregelte logische Uhr, eine globale Uhirfdie tracebasierte
Uberwachung paralleler AnwendungeRhD thesis, Universitat Stuttgart, March 2000.

19

