
FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

CESRI 2007 Research Report
Implementation and Validation of the
Extended Controlled Logical Clock

John C. Linford

FZJ-JSC-IB-2007-11

November 2007

(last change: 02.11.2007)

Contents

1 Abstract 1

2 Project Proposal and Overview 3

3 The Extended Controlled Logical Clock 5
3.1 The Clock Condition . 5

3.2 Forward Amortization . 6

3.3 Backward Amortization . 7

3.4 Collective Operations . 7

4 Implementation 9
4.1 Forward Replay and Forward Amortization . 12

4.2 Backwards Replay and Backwards Amortization 13

5 Acknowledgements 15

6 Biography 17

Bibliography 19

i

ii CONTENTS

List of Figures

3.1 Algorithm for backward amortization. 7

4.1 Program Class Diagram. 11

4.2 Datapoints Required During Backwards Amortization 13

iii

iv LIST OF FIGURES

List of Tables

4.1 Event sequences recorded for a few typical MPI operations. 9

4.2 Timestamps exchanged during forward amortization. 12

4.3 Timestamps exchanged during backward amortization. 13

v

vi LIST OF TABLES

Chapter 1

Abstract

CESRI is a fellowship opportunity sponsored by the National Science Foundation and managed by

the Institute of International Education for U.S. graduate students in science and engineering who

are seeking a quality hands-on international research experience in Austria, the Czech Republic,

Germany, Hungary, Poland, and Slovakia. The Extended Controlled Logical Clock is a method for

correcting invalid timestamps in event trace files during post-mortem performance analysis. Under

the CESRI 2007 program, I developed a highly-scalable implementation of the Extended Controlled

Logical Clock for use in the SCALASCA performance analysis toolkit and verified the method’s

applicability to real-world supercomputing applications. This document describes the theory of

the Extended Controlled Logical Clock and the design of a highly-scalable implemenation of the

algorithm. It also gives a narative description of the professional impact of the CESRI fellowship,

and the cultural and personal experiences which made my time as a 2007 CESRI fellow exceptional.

1

2 CHAPTER 1. ABSTRACT

Chapter 2

Project Proposal and Overview

CESRI is a fellowship opportunity sponsored by the National Science Foundation and managed by

the Institute of International Education for U.S. graduate students in science and engineering who

are seeking a quality hands-on international research experience in Austria, the Czech Republic,

Germany, Hungary, Poland, and Slovakia. CESRI hopes to improve the expertise of the awardees as

scientists, help them think and analyze on a broader, global level, build individual and institutional

partnerships, and build dialogue between the scientific community in the U.S. and Central Europe.

My research proposal for the CESRI 2007 program was to “alleviate scalability, portability and

usability problems in high-performance computing software systems.” I achieved this by improv-

ing the SCalable performance Analysis of LArge SCale Applications (SCALASCA) toolkit, which

performs post-mortem analysis of message-passing applications. I implemented the Extended Con-

trolled Logical Clock as part of SCALASCA and instrumented two multiphysics air quality models

with SCALASCA, demonstrating its applicability to massively-scalable, high-performance applica-

tions.

The purpose of this document is twofold. First, as a report on my experiences as a CESRI 2007

fellow, it discusses the professional and academic gains which came through the CESRI program

and the personal experiences I had as an American researcher abroad. Second, as a technical report,

this document gives a detailed explanation of the Extended Controlled Logical Clock (ECLC) in

terms of the SCALASCA event model, and describes a highly-scalable implementation of the ECLC

for use in SCALASCA.

The document is organized as follows. An introduction to the Extended Controlled Logical Clock

is given in Chapter 3, and a description of the implementation is given in Chapter 4. The narative

description of my personal and professional experience as a CESRI fellow is found in Chapter ??
and Chapter ??.

3

4 CHAPTER 2. PROJECT PROPOSAL AND OVERVIEW

Chapter 3

The Extended Controlled Logical Clock

Post-mortem analysis of message-passing applications provides measurements of wait-times. An

analysis of these wait-times can detect system errors and program design flaws in large-scale su-

percomputing applications, but the accuracy of the analysis depends on the comparability of event

timestamps taken on different processors. An inaccurate timestamp will not only dialate the interval

between events, but may alter the logical order of events, causing a message to appear to be received

before it is sent. This is a violation of the clock condition which requires that when an event e with

timestamp C(e) precedes an event e′ with timestamp C(e′), then C(e) < C(e′).

Unfortunately, processor clocks are often entirely non-synchronized or only synchronized in dis-

joint partitions (i.e., an SMP-node or multicore-chip). Clock synchronization protocols, such as

NTP [4], are typically too inaccurate for our purposes, but assuming that all local clocks on a paral-

lel machine run at different but constant speeds (i.e., drifts), their time can be described as a linear

function of the global time. This approach is used in the tracing library of the SCALASCA toolkit

[2], which performs offset measurements between all local clocks and an arbitrarily-chosen master

clock once at program initialization and once at program finalization. However, as the assumption

of constant drift is only an approximation, violations of the clock condition may still occur.

The controlled logical clock (CLC) [5], an enhancement of Lamport’s logical clock [3], is a method

to retroactively correct timestamps violating the clock condition. The algorithm requires times-

tamps with limited errors (achievable through weak pre-synchronization) and a globally-unified

tracefile. Since modifying individual timestamps might dialate local time intervals and even in-

troduce new violations, the correction considers the context of the modified event by stretching

the local time axis in the immediate vicinity of the affected event. The extended controlled logi-

cal clock (ECLC) [1] extends the controlled logical clock to apply to collective communication to

provide a more complete correction of realistic message-passing traces. In addition to broader ap-

plicability, the ECLC algorithm operates on distributed trace files and therefore scales to thousands

of application processes.

3.1 The Clock Condition

A clock condition violation occurs if the receive event of a message has an earlier timestamp than

its matching send event. That is, the happened-before relation e → e′ [5] between two events e

and e′ with their respective timestamps C(e) and C(e′) does not hold. A clock condition violation
between two events is defined as:

∃ e, e′ : e → e′ ∧ C(e) ≥ C(e′). (3.1)

The CLC algorithm restores the clock condition using happened-before relationships between dis-

tributed events derived from point-to-point communication event semantics. More precisely, if the

5

6 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

condition is violated for a send-receive event pair, the receive event is moved forward in time. This

adjustment is called forward amortization. To preserve the length of intervals between local events,

events immediately preceding the corrected event are moved forward as well. This adjustment is

called backward amortization. A detailed description of the CLC algorithm and a review of further

synchronization approaches can be found in [5], [6], and [1].

3.2 Forward Amortization

Forward amortization is the process by which timestamps are moved forward to maintain the clock

condition. Timestamps computed by the CLC are denoted by the symbol LC ′. LC ′ is modeled with

t as the wall clock time and T (t) as the global time to which the process clocks Ci(t) (i = 0..n−1)
are synchronized. Next, n is the number of processes, e

j
i is the jth event on process i and so

E = {ej
i |i = 0..n− 1, j = 0..jmax(i)} is the set of all events in the trace. The set of matching send

and receive pairs is defined with

M = {(el
k, en

m)|el
k = send event, en

m = matching receive event}. (3.2)

Note that the send event always marks the beginning of a send operation whereas a receive event

marks the end of a receive operation. e
j
i is an internal event if it is neither a send nor a receive event.

δi is the minimal difference between two events on process i, and µk,i is the minimum message

delay of messages from process k to process i. Finally, γ
j
i is a control variable with γ

j
i ∈ [0, 1]. For

each process, LC ′

i is defined as

LC ′

i(e
j
i) :=























































































max(LC ′

k(e
l
k) + µk,i,

LC ′

i(e
j−1

i) + δi,

LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))),

Ci(t(e
j
i))) if

el

k

∃ (el
k, e

j
i) ∈ M (3.3)

max(LC ′

i(e
j−1

i) + δi,

LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))),

Ci(t(e
j
i))) otherwise. (3.4)

As can be seen, the algorithm consists of two equations. Equation (3.3) adjusts the timestamps

of receive events while Equation (3.4) modifies timestamps of internal and send events. Note that

for each process, the terms LC ′

i(e
j−1

i) + δi and LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))) must be
omitted for the first event (j = 0).

Through the term Ci(t(e
j
i)) in Equation (3.3) and Equation (3.4), the algorithm ensures that a

correction is only applied if the trace violates the clock condition. The new timestamps satisfy the

clock condition, since the term LC ′

k(e
l
k)+µk,i in Equation (3.3) ensures that LC ′(ej

i) is put forward

compared to Ci(t(e
j
i)) if needed in case of a clock condition violation. To ensure that the clock

does not stop after a clock condition violation, the term LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))
in Equation (3.3) and Equation (3.4) approximates the duration of the original communication after

a clock condition violation. Rabenseifner describes the control mechanism and γ
j
i in more detail

in [6].

3.3. BACKWARD AMORTIZATION 7

3.3 Backward Amortization

Backward amortization is applied to smooth jump discontinuities caused during forward amortiza-

tion. This is done by distributing a jump of size ∆t over an amortization interval LA preceding

the violating receive event by using a process-local, piecewise linear correction. In Figure 3.1, the

horizontal axis represents LCb
i , which is equal to LC ′

i (i.e., the state after forward amortization)

but without the jump ∆t at event r. The vertical axis shows offsets to LCb
i after applying different

stages of backward amortization.

X

X

X

i ris3s2is1

Amortization interval LA

LCi
b

with LC i
b

:= LC’i without jump Δt

Jump Δt due to LC’k(ek
l)+μi.k in Eq.(3)

(LC’m(em
n) - μi.m)

Clocks – LCi
b

of process i

Corresponding receive

event , i.e., (s3,em
n) M∈

Clocks: LC i’

 LCi
I ideal backward amortization

 in the absence of conflicting sends

 LCi
A piece-wise linear

 backward amortization

Events : r = Receive event

 s = Send event

 i = Internal event

Figure 3.1: Algorithm for backward amortization.

In order to preserve the clock condition, the correction must not advance the timestamps of send

events farther than LC ′

m − µi,m of the corresponding receive event e
n
m of a process m. These

upper limits are shown as circled values above the locations of the send events in Figure 3.1. If

these limits are smaller than the dashed-dotted line (here at events s1 and s2), then a piecewise

linear interpolation function must be used, represented as a dotted line in Figure 3.1. If there are

no violating send events in the backward amortization interval of a process i, then an ideal linear

interpolation can be used (the dash-dotted line in Figure 3.1). For each receive event with a jump,

the backward amortization algorithm is applied independently. If there are additional receive events

inside the amortization interval during such a calculation step, then these events can be treated like

internal events, because advancing the timestamp of a receive event further cannot violate the clock

condition.

3.4 Collective Operations

A single collective operation can be considered as a composition of many point-to-point commu-

nications. That is, if S and R denote the set of send and receive events in a collective operation

instance i, respectively, then for each call to a collective operation, the set of all send-receive pairs

M is enlarged by adding S × R.

1-to-N:One root process sends its data toN other processes. Example are MPI Bcast,MPI Scatter,

and MPI Scatterv. S only contains the send event of the root process, whereas R contains re-

ceive events from all processes of the communicator with a data length greater than zero.

N-to-1: One root process receives its data fromN processes. Examples are MPI Reduce,MPI Gather,

and MPI Gatherv. R only contains the receive event on the root process. S is the set of send

events on all processes of the communicator with a data length greater zero. Given that the root

process is not allowed to exit the operation until the last process enters the operation, the latest en-

ter event is the relevant send event to fulfill the collective clock condition. Hence, if S contains more

than one element, the term LC ′

k(e
l
k) + µk,i in Equation (3.3) must be replaced by the maximum of

LC ′

k(e
l
k) + µk,i over all e

l
k ∈ S.

8 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

N-to-N’:All processes of the communicator are sender and receiver. Examples are MPI Allreduce,

MPI Allgather, MPI Alltoall, and MPI Barrier with N’=N, and the variable length op-

erations MPI Reduce scatter, MPI Allgatherv, and MPI Alltoallv. S and R are all

enter and collective exit events whose processes contribute input data or receive output data. For a

call to MPI Barrier, all processes of the communicator contribute to S and R.

Special cases: For MPI Scan and MPI Exscan, the set of messages added to M cannot be ex-

pressed as the Cartesian product S × R. These cases are currently ignored by the ECLC algorithm

and therefore are not handled in our implementation. This functionality is a proposed future work.

Chapter 4

Implementation

The ECLC algorithm was implemented as part of the SCALASCA performance analysis toolkit, so

the implementation is described in terms of the SCALASCA event model. The Parallel Event Analy-

sis and Recognition Library (PEARL) [2] provides the necessary classes and methods to process and

operate on an event stream taken from a parallel trace file. For each individual event, SCALASCA

records at least a timestamp, the location (i.e., the process) causing the event, and the event type. De-

pending on the event type, additional information may be supplied. The event model distinguishes

between programming-model independent events, such as entering and exiting code regions, and

events related to MPI operations. The latter include events representing point-to-point operations,

and the completion of collective operations. Collective exit events are specializations of normal exit

events carrying additional information (i.e., the communicator) that allows us to identify concurrent

collective exits belonging to the same collective operation instance.

Because the PEARL encapsulation of SCALASCA events does not provide methods for determining

the logical type (i.e. role) of an event in an event stream, a set of predicate functions to determine

the logical type of an event, based on the event type and code region where the event was produced,

were created. Every possible event is abstracted into one of three logical types: send, receive, and

internal. For example, an “enter” event may be the start of a collective communication operation

and therefore should be considered a “send” event when amortizing. This abstraction makes it

possible to express collective operations as compositions of point-to-point operations. Table 4.1

gives the event sequences recorded for a few typical MPI operations.

Table 4.1: Event sequences recorded for a few typical MPI operations.

Function name Event sequence
MPI Send() (enter, send, exit)

MPI Recv() (enter, receive, exit)

MPI Allreduce() (enter, collective exit) for each participating process

PEARL’s parallel replay functionality is used to process each local tracefile in parallel, similar to

the approach used by the SCALASCA tracefile analyzer (see [2] for details). The parallel replay

approach has several important advantages. First, a single, globally-unified tracefile is not required,

which greatly improves scalability. Secondly, it requires very little overhead, so machines with

low per-process memory (e.g. IBM BlueGene/L) are supported. To perform a parallel replay, each

process reads the local tracefile into memory and traverses the event stream with an instance of

the PEARL Event iterator class. This approach requires exactly the same number of processes as

was used in the original application and guarantees scalability equal to or greater than the original

application scalability. For each communication event in the stream, the following algorithm is

applied:

1. Determine the logical type of the event based on event type and code region

2. If the event is a logical “send” event:

9

10 CHAPTER 4. IMPLEMENTATION

(a) Perform a local forwards amortization

(b) Forward-replay the communication so the receiving process has the correct remote

timestamp

(c) Backwards-replay the communication and store the remote timestamp in a ring buffer

3. If the event is a logical “receive” event:

(a) Forward-replay the communication so the sending process has the correct remote times-

tamp

(b) Perform a local forwards amortization

(c) Backwards-replay the communication and store the remote timestamp in a ring buffer

(d) Detect any jump discontinuity and perform backwards amortization if required

4. If the event is a logical “internal” event: Perform a local forwards amortization

The control mechanism used for the extended controlled logical clock requires a global view of

the trace data to calculate γi. Establishing a global view of the trace data is not feasible with the

replay-based approach since communication would be required for every single event. This can be

solved by performing multiple passes until the maximum error e is below a predefined threshold ǫ.

In this implementation, γ is fixed at γ = 0.99, but implementing the iterative control mechanism is
trivial and will be done in future work.

At this time, the SCALASCA cannot record measurements of communication latency and minimum

time between local events. It is impossible to calculate per-process δ and µwithout this information,

so the current implementation used fixed values of δ = 1.0× 10−9 and µ = 1.0× 10−6. Extending

SCALASCA and PEARL to make such measurements available is a topic of current research, and the

ECLC implementation is designed to accept these values as parameters when they become available.

Listing 4.1: Using Synchronizer with PEARL

1 / / I n i t i a l i z e g l o b a l d e f i n i t i o n s

2 Globa lDefs ∗ de f s = new Globa lDefs (a r c h i v e) ;
3 / / Prepare t h e l o c a l t r a c e

4 Loca lT race ∗ t r a c e = new Loca lT race (∗ defs , a r c h i v e , rank) ;
5 / / Make sure c a l l t r e e IDs are u n i f i e d

6 PEARL mp i un i f y c a l l t r e e (∗ de f s) ;
7 / / P reproce s s e v en t t imes t amps

8 t r a c e−>p r e p r o c e s s () ;

9

10 / / S e t up c a l l b a c k s f o r e v e n t s

11 Synch ron i z e r sync (rank) ;

12 Cal lbackManager fwdManager ;

13 fwdManager . r e g i s t e r c a l l b a c k (ANY, PEARL crea t e ca l l back (&sync , &

Synch ron i z e r : : amo r t i z e)) ;

14

15 / / Per form t h e r e p l a y

16 PEARL forward rep lay (∗ t r a c e , fwdManager , NULL) ;

Figure 4.1 shows the program class diagram. The ControlledLogicalClock class encap-

sulates the Controlled Logical Clock. The member variables delta, mu, and gamma correspond

to δ, µ, and γ in Equations 3.3 and 3.4. The value member variable is the current clock value.

The member functions amortize forward intern and amortize forward recv corre-

spond to Equations 3.3 and 3.4, respectively. The definitions of these functions are shown in List-

ing 4.2. The RingBuffer class provides an optimized, light-weight, templated ring-buffer class

to store remote timestamps for use during backwards amortization. Memory in RingBuffer is

11

� � � � � � � � � � 	 �
 � �
 � � � � � � � � � � � � � � � �
 � � � � � � � � �
 ! " � # � # � $ � � � � � � � � ! � �
 % " � � � # � $ � � � � � � � � ! � �
 " � � # & � % % � � � ' & � % % � " (� � � � � � � ! � �)
 � � � � * � � � " � � � � � + � ' � � � * � � � �, - � � � . " � � / � " 0 " � � � 1, � � � " � / � 0 � � � � � � ' � " � � � � � � * � � � � � � � � � � � ' � " 2 3 � � � " � � # � � � � � � 3 � # � � � � � � � � � � # � � � 2 3 � � � � � � * � � � � � � � 4 � � � 5 1
 � � 6 � " � � � � 0 � � " � � � � � � � � " � ' 2 1 � � � " � '
 � - � � � 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 � � � � # 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 � 7 � � � � � 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 � 8 9 8 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 � 8 9 : 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 � : 9 8 0 � # � � � � � � � � � � # � � � 2 1 � � � � �
 % 6 � � " � ! � � � � � � � � 0 � � � � � # � � � � � � � � # � � � 2 1
 % 6 � � " � ! � � � � " � � # 0 " � � # � # � � � � � � � � # � � � 2 1 � � � � � � � � ! � �
 � � 6 � � " � ! � � � � � � � � 0 � � � � � # � � � � � � � � # � � � 2 1 � � � � � � � � ! � �
 � � 6 � � " � ! � � � � " � � # 0 " � � # � # � � � � � � � � # � � � 2 1 � � � � � � � � ! � �
 � � � " � / � � " � � # 0 � # � � � � � � � � � � # � � � 2 1
 � � � " � / � � � � � " � 0 � # � � � � � � � � � � # � � � 2 1
 � � 6 � � � � � " � / � � " � � # 0 " � � # � # � � � � � � � � # � � � 2 3 � � � � � � � � � � ! � � 1

$; < �- = > � � � � � ? @ � �A � � B C D E E 	 �
 � � % % � $; < �
 . � � � � ? @ � �
 � � � � � � � � � ? @ � �, � � ' & � % % � " 0 . � � � � � ? @ � � 1, ! � � . 0 9 � $; < � 1, � ! � " � � � " F G 0 � � � � ? @ � � 1 � � � � � � $; < � 2, � / � 0 1 � � � � ? @ � �

H � � I � � J J 	 K L � B � � M J H J � � NO # � � � � � � � � � � � � ! � �O � � � � � � � � � � � � � ! � �O � � � � � � � � � � ! � �O ' � � � � � � � � � � �, * � � � " � � � � � + � ' � � � * � � � � 0 1, � � � " � / � � % � " 6 � " � � � � � " � 0 � � " � # � $ � � � � � � � � � � � � � ! � � 3 ! " � # � # � $ � � � � � � � � � � � � � ! � � 1 � � � � � � � � ! � �, � � � " � / � � % � " 6 � " � � " � � # 0 � � " � # � $ � � � � � � � � � � � � � ! � � 3 � � � � � # � $ � � � � � � � � � � � � � ! � � 3 ! " � # � # � $ � � � � � � � � � � � � � ! � � 1 � � � � � � � � ! � �, ' � � � # � � � � 0 1 � � � � � � � � ! � �, � � � � # � � � � 0 # � � � � � � � � ! � � 1, ' � � � � � � � � 0 1 � � � � � � � � ! � �, � � � � � � � � � 0 � � � � � � � � � ! � � 1, ' � � � � � 0 1 � � � � � � � � ! � �, � � � � � � 0 � � � � � � � � � ! � � 1, ' � � � ' � � � � 0 1 � � � � � � �, � � � � ' � � � � 0 ' � � � � � � � 1

, � � �

, " � � # & � % %

Figure 4.1: Program Class Diagram.

12 CHAPTER 4. IMPLEMENTATION

statically allocated, making this class both highly efficient and suitable for low-memory architec-

tures. (Although dynamic memory allocation would normally be preferable in a restricted memory

environment, we take advantage of the fact that the buffer will be filled to capacity for the ma-

jority of the program’s execution time and so avoid the overhead of a dynamic data structure.)

The Synchronizer class encapsulates the Extended Controlled Logical Clock. The myRank

member variable records the current process rank (i.e. location), which is identical to the pro-

cess rank of the application process which produced the local trace file. The prevEventTime

and firstEventTimemember variables corespond to LC ′

i(e
j−1

i) and LC ′

i(e
0
i), respectively, in

Equations 3.3 and 3.4. The amortize member function is a callback function for use with the

PEARL replay mechanism, as shown in Listing 4.1. I discuss the other member functions in more

detail in Chapters 4.1 and 4.2.

Listing 4.2: C++ implementation of Equations 3.4 and 3.3

1 t im e s t amp t am o r t i z e f o rw a r d i n t e r n (t im e s t amp t curEvtT ,

t im e s t amp t prevEvtT) {
2 va l u e = s t d : : max (v a l u e + d e l t a , s t d : : max (v a l u e + gamma ∗ (

curEvtT − prevEvtT) , curEvtT)) ;

3 re turn va l u e ;
4 }
5

6 t im e s t amp t amo r t i z e f o rw a r d r e c v (t im e s t amp t curEvtT ,

t im e s t amp t prevEvtT) {
7 t im e s t amp t i n t e r nT = am o r t i z e f o rw a r d i n t e r n (curEvtT , prevEvtT

) ;

8 v a l u e = s t d : : max (sendEvtT + mu , i n t e r nT) ;

9 re turn i n t e r nT ;
10 }

When performing backwards amortization, both an LCb
i which accounts only for local time axis di-

lation and anLC ′

i which also considers remote timestamps are required. amortize forward intern

and amortize forward recv set value to LC ′

i and return LCb
i , but in the case of Equa-

tion 3.4, LCb
i = LC ′

i.

4.1 Forward Replay and Forward Amortization

Table 4.2: Timestamps exchanged during forward amortization.
Type of operation timestamp exchanged MPI function
1-to-1 timestamp of send event MPI Send

1-to-N timestamp of root enter event MPI Bcast

N-to-1 max(all enter event timestamps) MPI Reduce

N-to-N’ max(all enter event timestamps) MPI Allreduce

The first step in replaying a communication is the forward replay, which is performed by fwd replay send

and fwd replay recv. Here the process which was the sender in the original application sends

the timestamp of the send event to the process which was the receiver in the original application.

Communication proceeds in the same direction as it did in the original application (i.e. forward).

This is all the communication required to compute forward amortization, since only local times-

tamps and at most one remote timestamp is required. Depending on the type of the original com-

munication operation, the timestamps are exchanged using different MPI function calls as listed in

Table 4.2.

4.2. BACKWARDS REPLAY AND BACKWARDS AMORTIZATION 13

Forward amortization is performed by amortize recv or amortize intern, depending on

if the event is a receive event or an internal event (recall that send events are considered inter-

nal events). amortize recv invokes backwards amortization if a clock condition violation is

detected after forward amortization has been performed.

4.2 Backwards Replay and Backwards Amortization

Table 4.3: Timestamps exchanged during backward amortization.
Type of operation timestamp exchanged MPI function
1-to-1 Implementationtimestamp of receive event MPI Send

1-to-N min(all collective exit event timestamps) MPI Reduce

N-to-1 timestamp of root collective exit event MPI Bcast

N-to-N min(all collective exit event timestamps) MPI Allreduce

The second part of a communication replay is the backward replay, which is performed by bkwd replay send

and bkwd replay recv. Here the process which was the sender in the original application re-

ceives the timestamp of the receive event from the process which was the receiver in the original

application. The roles of sender and receiver are reversed in reference to the original application,

so the communication proceeds in a “backwards” direction. Depending on the type of the origi-

nal communication operation, the timestamps are exchanged using different MPI function calls, as

listed in Table 4.3.

Figure 4.2: Datapoints Required During Backwards Amortization

Backwards amortization is performed by bkwd amortize recv. The datapoints required to

calculate backwards amortization are described in Figure 4.2. The backward amortization algorithm

is as follows:

1. Let en be an event preceding the event which caused the∆t timeline jump. (timestamp(en) =
bn)

2. Calculate the ideal linearly interpolated timestamp, cn, for en.

3. Let timestamp(en) := cn

4. If en is a send event and cn is greater than the receive event timestamp for this send event,

then a piecewise linear interpolation is calculated as follows:

(a) Let cn equal the receive event timestamp

(b) Let ēn be the event directly following event en (i.e. en+1)

14 CHAPTER 4. IMPLEMENTATION

(c) Calculate the piecewise linearly interpolated timestamp, c̄n, for ēn

(d) Let timestamp(ēn) := c̄n

(e) Let ēn := ¯en + 1

(f) If timestamp(ēn) == ck, continue from Step 5. Otherwise, continue from Step 4a

5. Let en := en−1

6. If timestamp(en) == b0, END backwards amortization. Otherwise, continue from Step 1.

Equations 4.2 - 4.8 describe how the datapoints in Figure 4.2 are calculated.

∆t = ck − bk ∆̄t = b̄0 − bn (4.1) (4.2)

LA = bk − b0 L̄A = bk − bn (4.3) (4.4)

bn = timestamp(en) b̄n =

∆t
LA

b0 + cn

∆t
LA+1

+ ∆̄t (4.5) (4.6)

cn =
∆t

LA
(bn − b0) + bn c̄n =

∆t − ∆̄t

L̄A

(b̄n − bn) + b̄n (4.7) (4.8)

Chapter 5

Acknowledgements

Daniel Becker of Forschungszentrum Jülich is the primary architect of the Extended Controlled

Logical Clock, which was first formulated in [1]. He oversaw my research in Jülich and was my

main interface to the researchers and resources there. Prof. Dr. Felix Wolf leads the SCALASCA

research and development group and provided me with every opportunity to improve my experience

in Jülich. Ágnes Vajda, Chris Medalis, and Vijay Renganathan were my CESRI contacts and excel-

lent hosts. This work would not have been possible without Herr Jamie Bishop of the Department

of Foreign Languages at Virginia Polytechnic Institute and State University.

15

16 CHAPTER 5. ACKNOWLEDGEMENTS

Chapter 6

Biography

John C. Linford is a PhD student of computer science at Virginia Tech. He received his Bachelor’s

of Computer Science and Mathematics in 2005 from Weber State University in Ogden, Utah. John

graduated from Weber State as the Crystal Crest Scholar of the Year, the school’s highest academic

honor, and was an adjunct professor of computer science before beginning his graduate studies at

Virginia Tech. Under Dr. Adrian Sandu, John is studying high performance computing systems and

advanced multiphysics models, such as air quality and weather models. John is a member of the

Virginia Tech Triathlon Team and competed in the 2007 USA national triathlon championship. His

interests include cooking, playing piano, and art.

17

18 CHAPTER 6. BIOGRAPHY

Bibliography

[1] D. Becker, R. Rabenseifner, and F. Wolf. Timestamp synchronization for event traces of large-

scale message-passing applications. In Proc. 14th European PVM/MPI Conference, Paris,

France, September 2007. Springer.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable parallel trace-based performance

analysis. In Proc. 13th European PVM/MPI Conference, Bonn, Germany, September 2006.

Springer.

[3] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558–565, July 1978.

[4] D. L. Mills. Network Time Protocol (Version 3). The Internet Engineering Task Force - Net-

work Working Group, March 1992. RFC 1305.

[5] R. Rabenseifner. The controlled logical clock - a global time for trace based software moni-

toring of parallel applications in workstation clusters. In Proc. 5th EUROMICROWorkshop on

Parallel and Distributed (PDP’97), pages 477–484, London, UK, January 1997.

[6] R. Rabenseifner. Die geregelte logische Uhr, eine globale Uhr für die tracebasierte

Überwachung paralleler Anwendungen. PhD thesis, Universität Stuttgart, March 2000.

19

