000060178 001__ 60178
000060178 005__ 20180211185735.0
000060178 0247_ $$2DOI$$a10.1209/0295-5075/80/25002
000060178 0247_ $$2WOS$$aWOS:000250409700012
000060178 0247_ $$2ISSN$$a0295-5075
000060178 037__ $$aPreJuSER-60178
000060178 041__ $$aeng
000060178 082__ $$a530
000060178 084__ $$2WoS$$aPhysics, Multidisciplinary
000060178 1001_ $$0P:(DE-HGF)0$$aAnand, M.$$b0
000060178 245__ $$aLaser absorption in microdroplet plasmas
000060178 260__ $$aLes Ulis$$bEDP Sciences$$c2007
000060178 300__ $$a25002
000060178 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000060178 3367_ $$2DataCite$$aOutput Types/Journal article
000060178 3367_ $$00$$2EndNote$$aJournal Article
000060178 3367_ $$2BibTeX$$aARTICLE
000060178 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000060178 3367_ $$2DRIVER$$aarticle
000060178 440_0 $$017741$$aEuroPhysics Letters : epl$$v80$$x0302-072X$$y2
000060178 500__ $$aRecord converted from VDB: 12.11.2012
000060178 520__ $$aWe present experimental measurements of the absorption of ultrashort laser pulses by 15 m diameter methanol microdroplets. The droplet absorbs upto 70% of the incidence laser energy in the presence of a prepulse at intensities of about 1.5 x 10(16) W cm-(-2). In the absence of a prepulse, the absorption is only about 20%. Simultaneous measurements of X-ray yield (12 keV to 350 keV) and the absorption in the droplet plasma, shows that our earlier measurements of e. cient generation (Anand M. et al. Appl. Phys. Lett., 88 (2006) 181111) of hard X-rays from the droplet plasma is due to the increased absorption in the droplets in the presence of optimum prepulse. 1-D PIC simulations, mimicing the mass-limited droplet density pro. le, demonstrate the effectiveness of the large scale-length droplet plasma in providing optimal conditions for resonant laser absorption energy and generation of hot electrons. Copyright (C) EPLA, 2007.
000060178 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000060178 588__ $$aDataset connected to Web of Science
000060178 650_7 $$2WoSType$$aJ
000060178 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b1$$uFZJ
000060178 7001_ $$0P:(DE-HGF)0$$aKrishnamurthy, M.$$b2
000060178 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/0295-5075/80/25002$$gVol. 80, p. 25002$$p25002$$q80<25002$$tepl$$v80$$x0302-072X$$y2007
000060178 8567_ $$uhttp://dx.doi.org/10.1209/0295-5075/80/25002
000060178 909CO $$ooai:juser.fz-juelich.de:60178$$pVDB
000060178 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000060178 9141_ $$y2007
000060178 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000060178 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000060178 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000060178 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000060178 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000060178 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000060178 970__ $$aVDB:(DE-Juel1)94388
000060178 980__ $$aVDB
000060178 980__ $$aConvertedRecord
000060178 980__ $$ajournal
000060178 980__ $$aI:(DE-Juel1)JSC-20090406
000060178 980__ $$aUNRESTRICTED