000060178 001__ 60178 000060178 005__ 20180211185735.0 000060178 0247_ $$2DOI$$a10.1209/0295-5075/80/25002 000060178 0247_ $$2WOS$$aWOS:000250409700012 000060178 0247_ $$2ISSN$$a0295-5075 000060178 037__ $$aPreJuSER-60178 000060178 041__ $$aeng 000060178 082__ $$a530 000060178 084__ $$2WoS$$aPhysics, Multidisciplinary 000060178 1001_ $$0P:(DE-HGF)0$$aAnand, M.$$b0 000060178 245__ $$aLaser absorption in microdroplet plasmas 000060178 260__ $$aLes Ulis$$bEDP Sciences$$c2007 000060178 300__ $$a25002 000060178 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000060178 3367_ $$2DataCite$$aOutput Types/Journal article 000060178 3367_ $$00$$2EndNote$$aJournal Article 000060178 3367_ $$2BibTeX$$aARTICLE 000060178 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000060178 3367_ $$2DRIVER$$aarticle 000060178 440_0 $$017741$$aEuroPhysics Letters : epl$$v80$$x0302-072X$$y2 000060178 500__ $$aRecord converted from VDB: 12.11.2012 000060178 520__ $$aWe present experimental measurements of the absorption of ultrashort laser pulses by 15 m diameter methanol microdroplets. The droplet absorbs upto 70% of the incidence laser energy in the presence of a prepulse at intensities of about 1.5 x 10(16) W cm-(-2). In the absence of a prepulse, the absorption is only about 20%. Simultaneous measurements of X-ray yield (12 keV to 350 keV) and the absorption in the droplet plasma, shows that our earlier measurements of e. cient generation (Anand M. et al. Appl. Phys. Lett., 88 (2006) 181111) of hard X-rays from the droplet plasma is due to the increased absorption in the droplets in the presence of optimum prepulse. 1-D PIC simulations, mimicing the mass-limited droplet density pro. le, demonstrate the effectiveness of the large scale-length droplet plasma in providing optimal conditions for resonant laser absorption energy and generation of hot electrons. Copyright (C) EPLA, 2007. 000060178 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0 000060178 588__ $$aDataset connected to Web of Science 000060178 650_7 $$2WoSType$$aJ 000060178 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b1$$uFZJ 000060178 7001_ $$0P:(DE-HGF)0$$aKrishnamurthy, M.$$b2 000060178 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/0295-5075/80/25002$$gVol. 80, p. 25002$$p25002$$q80<25002$$tepl$$v80$$x0302-072X$$y2007 000060178 8567_ $$uhttp://dx.doi.org/10.1209/0295-5075/80/25002 000060178 909CO $$ooai:juser.fz-juelich.de:60178$$pVDB 000060178 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0 000060178 9141_ $$y2007 000060178 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review 000060178 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000060178 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000060178 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000060178 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000060178 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000060178 970__ $$aVDB:(DE-Juel1)94388 000060178 980__ $$aVDB 000060178 980__ $$aConvertedRecord 000060178 980__ $$ajournal 000060178 980__ $$aI:(DE-Juel1)JSC-20090406 000060178 980__ $$aUNRESTRICTED