001     60178
005     20180211185735.0
024 7 _ |2 DOI
|a 10.1209/0295-5075/80/25002
024 7 _ |2 WOS
|a WOS:000250409700012
024 7 _ |2 ISSN
|a 0295-5075
037 _ _ |a PreJuSER-60178
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Anand, M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Laser absorption in microdroplet plasmas
260 _ _ |c 2007
|a Les Ulis
|b EDP Sciences
300 _ _ |a 25002
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a EuroPhysics Letters : epl
|x 0302-072X
|0 17741
|y 2
|v 80
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present experimental measurements of the absorption of ultrashort laser pulses by 15 m diameter methanol microdroplets. The droplet absorbs upto 70% of the incidence laser energy in the presence of a prepulse at intensities of about 1.5 x 10(16) W cm-(-2). In the absence of a prepulse, the absorption is only about 20%. Simultaneous measurements of X-ray yield (12 keV to 350 keV) and the absorption in the droplet plasma, shows that our earlier measurements of e. cient generation (Anand M. et al. Appl. Phys. Lett., 88 (2006) 181111) of hard X-rays from the droplet plasma is due to the increased absorption in the droplets in the presence of optimum prepulse. 1-D PIC simulations, mimicing the mass-limited droplet density pro. le, demonstrate the effectiveness of the large scale-length droplet plasma in providing optimal conditions for resonant laser absorption energy and generation of hot electrons. Copyright (C) EPLA, 2007.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gibbon, P.
|b 1
|u FZJ
|0 P:(DE-Juel1)132115
700 1 _ |a Krishnamurthy, M.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1209/0295-5075/80/25002
|g Vol. 80, p. 25002
|0 PERI:(DE-600)1465366-7
|q 80<25002
|p 25002
|t epl
|v 80
|y 2007
|x 0302-072X
856 7 _ |u http://dx.doi.org/10.1209/0295-5075/80/25002
909 C O |o oai:juser.fz-juelich.de:60178
|p VDB
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2007
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)94388
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21