000060211 001__ 60211 000060211 005__ 20240712100845.0 000060211 0247_ $$2WOS$$aWOS:000253908100005 000060211 0247_ $$2doi$$a10.5194/acp-8-251-2008 000060211 0247_ $$2Handle$$a2128/8649 000060211 037__ $$aPreJuSER-60211 000060211 041__ $$aeng 000060211 082__ $$a550 000060211 084__ $$2WoS$$aMeteorology & Atmospheric Sciences 000060211 1001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b0$$uFZJ 000060211 245__ $$aSimple measures of ozone depletion in the polar stratosphere 000060211 260__ $$aKatlenburg-Lindau$$bEGU$$c2008 000060211 300__ $$a251 - 264 000060211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000060211 3367_ $$2DataCite$$aOutput Types/Journal article 000060211 3367_ $$00$$2EndNote$$aJournal Article 000060211 3367_ $$2BibTeX$$aARTICLE 000060211 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000060211 3367_ $$2DRIVER$$aarticle 000060211 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v8$$x1680-7316$$y2 000060211 500__ $$aRecord converted from VDB: 12.11.2012 000060211 520__ $$aWe investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63 degrees and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63 degrees equivalent latitude in spring (except for winters with an early vortex break-up). Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r = -0.75) with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone. 000060211 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0 000060211 588__ $$aDataset connected to Web of Science 000060211 650_7 $$2WoSType$$aJ 000060211 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b1$$uFZJ 000060211 7001_ $$0P:(DE-Juel1)VDB14290$$aLemmen, C.$$b2$$uFZJ 000060211 7001_ $$0P:(DE-HGF)0$$aHeinze, D.$$b3 000060211 7001_ $$0P:(DE-HGF)0$$aDameris, M.$$b4 000060211 7001_ $$0P:(DE-HGF)0$$aBodeker, G.$$b5 000060211 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-8-251-2008$$gVol. 8, p. 251 - 264$$p251 - 264$$q8<251 - 264$$tAtmospheric chemistry and physics$$v8$$x1680-7316$$y2008 000060211 8564_ $$uhttps://juser.fz-juelich.de/record/60211/files/acp-8-251-2008.pdf$$yOpenAccess 000060211 8564_ $$uhttps://juser.fz-juelich.de/record/60211/files/acp-8-251-2008.gif?subformat=icon$$xicon$$yOpenAccess 000060211 8564_ $$uhttps://juser.fz-juelich.de/record/60211/files/acp-8-251-2008.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000060211 8564_ $$uhttps://juser.fz-juelich.de/record/60211/files/acp-8-251-2008.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000060211 8564_ $$uhttps://juser.fz-juelich.de/record/60211/files/acp-8-251-2008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000060211 909CO $$ooai:juser.fz-juelich.de:60211$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000060211 9141_ $$y2008 000060211 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000060211 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess 000060211 915__ $$0LIC:(DE-HGF)CCBYNCSA2$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 2.0 000060211 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23 000060211 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1 000060211 970__ $$aVDB:(DE-Juel1)94443 000060211 9801_ $$aFullTexts 000060211 980__ $$aFullTexts 000060211 980__ $$aConvertedRecord 000060211 980__ $$aI:(DE-Juel1)IEK-7-20101013 000060211 980__ $$ajournal 000060211 980__ $$aVDB 000060211 980__ $$aUNRESTRICTED 000060211 981__ $$aI:(DE-Juel1)ICE-4-20101013 000060211 981__ $$aI:(DE-Juel1)IEK-7-20101013