000060705 001__ 60705
000060705 005__ 20240712101043.0
000060705 0247_ $$2DOI$$a10.1029/2007JD009007
000060705 0247_ $$2WOS$$aWOS:000255202300004
000060705 0247_ $$2ISSN$$a0141-8637
000060705 0247_ $$2Handle$$a2128/20391
000060705 037__ $$aPreJuSER-60705
000060705 041__ $$aeng
000060705 082__ $$a550
000060705 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000060705 1001_ $$0P:(DE-HGF)0$$aPozzoli, L.$$b0
000060705 245__ $$aTrace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ, PART I: Model description and insights from the spring 2001 TRACE-P experiment
000060705 260__ $$aWashington, DC$$bUnion$$c2008
000060705 300__ $$aD07308
000060705 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000060705 3367_ $$2DataCite$$aOutput Types/Journal article
000060705 3367_ $$00$$2EndNote$$aJournal Article
000060705 3367_ $$2BibTeX$$aARTICLE
000060705 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000060705 3367_ $$2DRIVER$$aarticle
000060705 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v113$$x0148-0227$$yD7
000060705 500__ $$aRecord converted from VDB: 12.11.2012
000060705 520__ $$aIn this paper, we introduce the ECHAM5-HAMMOZ aerosol-chemistry-climate model that includes fully interactive simulations of Ox-NOx-hydrocarbons chemistry and of aerosol microphysics (including prognostic size distribution and mixing state of aerosols) implemented in the General Circulation Model ECHAM5. The photolysis rates used in the gas chemistry account for aerosol and cloud distributions and a comprehensive set of heterogeneous reactions is implemented. The model is evaluated with trace gas and aerosol observations provided by the TRACE-P aircraft experiment. Sulfate concentrations are well captured but black carbon concentrations are underestimated. The number concentrations, surface areas, and optical properties are reproduced fairly well near the surface but underestimated in the upper troposphere. CO concentrations are well reproduced in general while O-3 concentrations are overestimated by 10-20 ppbv. We find that heterogeneous chemistry significantly influences the regional and global distributions of a number of key trace gases. Heterogeneous reactions reduce the ozone surface concentrations by 18-23% over the TRACE-P region and the global annual mean O-3 burden by 7%. The annual global mean OH concentration decreases by 10% inducing a 7% increase in the global CO burden. Annual global mean HNO3 surface concentration decreases by 15% because of heterogenous reaction on mineral dust. A comparison of our results to those from previous studies suggests that the choice of uptake coefficients for a given species is the critical parameter that determines the global impact of heterogeneous chemistry on a trace gas (rather than the description of aerosol properties and distributions). A prognostic description of the size distribution and mixing state of the aerosols is important, however, to account for the effect of heterogeneous chemistry on aerosols as further discussed in the second part of this two-part series.
000060705 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000060705 588__ $$aDataset connected to Web of Science
000060705 650_7 $$2WoSType$$aJ
000060705 7001_ $$0P:(DE-HGF)0$$aBey, I.$$b1
000060705 7001_ $$0P:(DE-HGF)0$$aRast, J. S.$$b2
000060705 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M. G.$$b3$$uFZJ
000060705 7001_ $$0P:(DE-HGF)0$$aStier, P.$$b4
000060705 7001_ $$0P:(DE-HGF)0$$aFeichter, J.$$b5
000060705 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2007JD009007$$gVol. 113, p. D07308$$pD07308$$q113<D07308$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v113$$x0148-0227$$y2008
000060705 8567_ $$uhttp://dx.doi.org/10.1029/2007JD009007
000060705 8564_ $$uhttps://juser.fz-juelich.de/record/60705/files/2007JD009007.pdf$$yOpenAccess
000060705 8564_ $$uhttps://juser.fz-juelich.de/record/60705/files/2007JD009007.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000060705 909CO $$ooai:juser.fz-juelich.de:60705$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000060705 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000060705 9141_ $$y2008
000060705 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000060705 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000060705 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000060705 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000060705 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000060705 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000060705 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000060705 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000060705 970__ $$aVDB:(DE-Juel1)95100
000060705 9801_ $$aFullTexts
000060705 980__ $$aVDB
000060705 980__ $$aConvertedRecord
000060705 980__ $$ajournal
000060705 980__ $$aI:(DE-Juel1)IEK-8-20101013
000060705 980__ $$aUNRESTRICTED
000060705 981__ $$aI:(DE-Juel1)ICE-3-20101013
000060705 981__ $$aI:(DE-Juel1)IEK-8-20101013