001     60717
005     20180211171626.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2007.01.020
024 7 _ |2 WOS
|a WOS:000245616400019
037 _ _ |a PreJuSER-60717
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Henze, S. K. M.
|b 0
245 _ _ |a Vertical bonding distances of PTCDA on Au(111) and Ag(111): Relation to the bonding type
260 _ _ |a Amsterdam
|b Elsevier
|c 2007
300 _ _ |a 1566 - 1573
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 5673
|a Surface Science
|v 601
|x 0039-6028
|y 6
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The vertical bonding distance of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) above the Au(111) surface has been measured by the normal incidence X-ray standing wave (NIXSW) technique. The carbon skeleton of PTCDA has a vertical distance of D = (3.27 +/- 0.02) angstrom to the Au(111) substrate. This distance corresponds very nearly to the sum of the van der Waals radii of carbon and gold, suggesting the adsorption to be a physisorptive one. In contrast, the PTCDA/Ag(111) interface which according to spectroscopic data follows the standard model of chemisorption very closely, shows a considerably smaller bonding distance of D = (2.86 +/- 0.01) angstrom [A. Hauschild, K. Karki, B.C.C. Cowie, M. Rolilting, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94 (2005) 036106, comment: Rurali et al., Phys. Lett. 95 (2005) 209205, reply: Phys. Rev. Lett. 95 (2005) 209206]. The different vertical adsorption heights of PTCDA on gold and silver are discussed in relation to the different bonding mechanisms on both noble metal surfaces. (c) 2007 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a normal incidence X-ray standing wave (NIXSW)
653 2 0 |2 Author
|a PTCDA
653 2 0 |2 Author
|a Au(111)
653 2 0 |2 Author
|a Ag(111)
653 2 0 |2 Author
|a chemisorption
653 2 0 |2 Author
|a physisorption
653 2 0 |2 Author
|a surface structure
653 2 0 |2 Author
|a metal-organic interface
700 1 _ |0 P:(DE-HGF)0
|a Bauer, O.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Lee, T.L.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Sokolowski, M.
|b 3
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1479030-0
|a 10.1016/j.susc.2007.01.020
|g Vol. 601, p. 1566 - 1573
|p 1566 - 1573
|q 601<1566 - 1573
|t Surface science
|v 601
|x 0039-6028
|y 2007
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2007.01.020
909 C O |o oai:juser.fz-juelich.de:60717
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8 P:(DE-Juel1)128791
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB801
|d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|x 0
920 1 _ |0 I:(DE-Juel1)VDB381
|d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 2
970 _ _ |a VDB:(DE-Juel1)95130
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21