000006075 001__ 6075
000006075 005__ 20200423202550.0
000006075 020__ $$a9783981084399
000006075 0247_ $$2Handle$$a2128/3678
000006075 0247_ $$2URI$$a3678
000006075 037__ $$aPreJuSER-6075
000006075 1001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b0$$uFZJ
000006075 245__ $$aTowards the Confirmation of QCD on the Lattice
000006075 260__ $$aJülich$$bFZJ, John von Neumann-Institut für Computing$$c2009
000006075 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000006075 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000006075 3367_ $$02$$2EndNote$$aThesis
000006075 3367_ $$2DRIVER$$adoctoralThesis
000006075 3367_ $$2BibTeX$$aPHDTHESIS
000006075 3367_ $$2DataCite$$aOutput Types/Dissertation
000006075 3367_ $$2ORCID$$aDISSERTATION
000006075 4900_ $$836737$$aNIC Series$$v43
000006075 500__ $$aRecord converted from VDB: 12.11.2012
000006075 502__ $$aWuppertal, Univ.$$bDr. (Univ.)$$d2009
000006075 520__ $$aLattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy.

In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible.

The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector.
000006075 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000006075 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000006075 8564_ $$uhttps://juser.fz-juelich.de/record/6075/files/nic-series-volume43.pdf$$yOpenAccess
000006075 8564_ $$uhttps://juser.fz-juelich.de/record/6075/files/nic-series-volume43.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000006075 8564_ $$uhttps://juser.fz-juelich.de/record/6075/files/nic-series-volume43.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000006075 8564_ $$uhttps://juser.fz-juelich.de/record/6075/files/nic-series-volume43.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000006075 909CO $$ooai:juser.fz-juelich.de:6075$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000006075 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000006075 9141_ $$y2009
000006075 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000006075 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000006075 970__ $$aVDB:(DE-Juel1)114174
000006075 980__ $$aVDB
000006075 980__ $$aJUWEL
000006075 980__ $$aConvertedRecord
000006075 980__ $$aphd
000006075 980__ $$aI:(DE-Juel1)JSC-20090406
000006075 980__ $$aUNRESTRICTED
000006075 980__ $$aFullTexts
000006075 9801_ $$aFullTexts