001     6083
005     20190625110517.0
024 7 _ |2 DOI
|a 10.1016/j.mee.2009.04.004
024 7 _ |2 WOS
|a WOS:000271363900025
024 7 _ |a altmetric:21802561
|2 altmetric
037 _ _ |a PreJuSER-6083
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Optics
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Rosezin, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75720
245 _ _ |a Electrical properties of Pt interconnects for passive crossbar memory arrays
260 _ _ |a [S.l.] @
|b Elsevier
|c 2009
300 _ _ |a 2275 - 2278
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microelectronic Engineering
|x 0167-9317
|0 4347
|y 11
|v 86
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We report on the fabrication and the electrical characterization of platinum interconnects for novel nonvolatile memory technologies. These nanowires present an important and essential contribution to the deep nanometer scaling of alternative architectures beyond CMOS, e.g. nanocrossbar arrays with resistance switching junctions. The nanowires, which have a thickness of 25 nm and a width ranging from 200 nm down to 40 nm, were patterned using electron beam direct writing. They were deposited by UHV electron beam evaporation in combination with a lift-off process.The electrical characteristic is increasingly affected by the contribution of surface effects like scattering at grain boundaries and scattering at the surfaces as the wire dimensions become smaller. With decreasing width of the platinum wire an increasing resistivity was observed, which is consistent with the theories of Fuchs-Sondheimer and Mayadas-Shatzkes. Our studies have shown that the investigated structures possess a high stability concerning the operational current densities up to 4 x 10(7) A/cm(2), and an additional annealing step results in an improvement of the electrical wire properties, which is explained by a higher quality of the grain boundaries and side walls. (C) 2009 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Nano electrodes
653 2 0 |2 Author
|a Nano crossbar arrays
653 2 0 |2 Author
|a Nano structuring
653 2 0 |2 Author
|a Resistive switching
700 1 _ |a Nauenheim, C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB61380
700 1 _ |a Trellenkamp, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)128856
700 1 _ |a Kügeler, C.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB15125
700 1 _ |a Waser, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.mee.2009.04.004
|g Vol. 86, p. 2275 - 2278
|p 2275 - 2278
|q 86<2275 - 2278
|0 PERI:(DE-600)1497065-x
|t Microelectronic engineering
|v 86
|y 2009
|x 0167-9317
856 7 _ |u http://dx.doi.org/10.1016/j.mee.2009.04.004
909 C O |o oai:juser.fz-juelich.de:6083
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)VDB554
|k IBN-PT
|l Prozesstechnologie
|g IBN
|x 2
970 _ _ |a VDB:(DE-Juel1)114189
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB554
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB554
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21