000061191 001__ 61191
000061191 005__ 20200423204603.0
000061191 0247_ $$2pmid$$apmid:18216191
000061191 0247_ $$2DOI$$a10.1523/JNEUROSCI.3732-07.2008
000061191 0247_ $$2WOS$$aWOS:000252777900006
000061191 0247_ $$2Handle$$a2128/20510
000061191 0247_ $$2altmetric$$aaltmetric:121644
000061191 037__ $$aPreJuSER-61191
000061191 041__ $$aeng
000061191 082__ $$a590
000061191 084__ $$2WoS$$aNeurosciences
000061191 1001_ $$0P:(DE-Juel1)VDB74025$$aPiepehoff, P.$$b0$$uFZJ
000061191 245__ $$aDeformation field morphometry reveals age-related structural differences between the brains of adults up to 51 years
000061191 260__ $$aWashington, DC$$bSoc.$$c2008
000061191 300__ $$a828 - 842
000061191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061191 3367_ $$2DataCite$$aOutput Types/Journal article
000061191 3367_ $$00$$2EndNote$$aJournal Article
000061191 3367_ $$2BibTeX$$aARTICLE
000061191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061191 3367_ $$2DRIVER$$aarticle
000061191 440_0 $$03603$$aJournal of Neuroscience$$v28$$x0270-6474$$y4
000061191 500__ $$aRecord converted from VDB: 12.11.2012
000061191 520__ $$aAge-related differences in the anatomical structure of the brains from 51 healthy male subjects (age: 18-51 years) were analyzed by deformation field morphometry in a cross-sectional study. The magnetic resonance images of the brains were nonlinearly registered onto the image of a reference brain: the registration algorithm simulated an elastic deformation of each brain (source brain) so that the voxelwise intensity differences with the reference brain were minimized. A three-dimensional deformation field was calculated for each source brain that encoded the anatomical differences between the source brain and the reference brain. Maps of voxelwise volume differences between each subject's brain and the reference brain were analyzed. They showed age-related differences in anatomically defined regions of interest. Major volume decreases were found in the white matter and nuclei of the cerebellum, as well as in the ventral thalamic nuclei and the somatosensory and motor cortices, including the underlying white matter. These findings suggest that aging between the second and sixth decade predominantly affects subcortical nuclei and cortical areas of the sensorimotor system, forming the cortico-rubro-cerebello-thalamo-cortical pathway. Additionally, a pronounced age-related decline in volume was observed in the rostral anterior cingulate, orbitofrontal, and lateral prefrontal cortices. Almost no differences were observed in the occipital and temporal lobes. The ventricles showed a pronounced widening. Remarkably, these volume differences occur at a relatively early period of the human life span. It may be speculated that these structural differences accompany or precede differences in sensorimotor functions and behavior.
000061191 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000061191 588__ $$aDataset connected to Web of Science, Pubmed
000061191 650_2 $$2MeSH$$aAdolescent
000061191 650_2 $$2MeSH$$aAdult
000061191 650_2 $$2MeSH$$aAging: pathology
000061191 650_2 $$2MeSH$$aBrain: pathology
000061191 650_2 $$2MeSH$$aCross-Sectional Studies
000061191 650_2 $$2MeSH$$aHumans
000061191 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000061191 650_2 $$2MeSH$$aMale
000061191 650_2 $$2MeSH$$aMiddle Aged
000061191 650_7 $$2WoSType$$aJ
000061191 65320 $$2Author$$aaging
000061191 65320 $$2Author$$amorphometry
000061191 65320 $$2Author$$acerebellum
000061191 65320 $$2Author$$athalamus
000061191 65320 $$2Author$$acingulate
000061191 65320 $$2Author$$asensorimotor
000061191 7001_ $$0P:(DE-Juel1)VDB33810$$aHömke, L.$$b1$$uFZJ
000061191 7001_ $$0P:(DE-HGF)0$$aSchneider, F.$$b2
000061191 7001_ $$0P:(DE-HGF)0$$aHabel, U.$$b3
000061191 7001_ $$0P:(DE-Juel1)131794$$aShah, J. N.$$b4$$uFZJ
000061191 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b5$$uFZJ
000061191 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b6$$uFZJ
000061191 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.3732-07.2008$$gVol. 28, p. 828 - 842$$p828 - 842$$q28<828 - 842$$tThe @journal of neuroscience$$v28$$x0270-6474$$y2008
000061191 8567_ $$uhttp://dx.doi.org/10.1523/JNEUROSCI.3732-07.2008
000061191 8564_ $$uhttps://juser.fz-juelich.de/record/61191/files/828.full.pdf$$yOpenAccess
000061191 8564_ $$uhttps://juser.fz-juelich.de/record/61191/files/828.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000061191 909CO $$ooai:juser.fz-juelich.de:61191$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000061191 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000061191 9141_ $$y2008
000061191 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000061191 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061191 9201_ $$0I:(DE-Juel1)INB-3-20090406$$d31.12.2008$$gINB$$kINB-3$$lMedizin$$x0
000061191 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x1
000061191 970__ $$aVDB:(DE-Juel1)95901
000061191 980__ $$aVDB
000061191 980__ $$aConvertedRecord
000061191 980__ $$ajournal
000061191 980__ $$aI:(DE-Juel1)INB-3-20090406
000061191 980__ $$aI:(DE-82)080010_20140620
000061191 980__ $$aUNRESTRICTED
000061191 9801_ $$aFullTexts
000061191 981__ $$aI:(DE-Juel1)VDB1046