
John von Neumann Institute for Computing

Jülich Blue Gene/L Scaling Workshop 2006

W. Frings, M.-A. Hermanns, B. Mohr, B. Ort

published in

NIC Symposium 2008,
G. Münster, D. Wolf, M. Kremer (Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 39, ISBN 978-3-9810843-5-1, pp. 307-314, 2008.

c© 2008 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume39



Jülich Blue Gene/L Scaling Workshop 2006

Wolfgang Frings, Marc-Andr é Hermanns, Bernd Mohr, and Boris Orth

John von Neumann Institute for Computing
Jülich Supercomputing Centre

Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: {w.frings, m.a.hermanns, b.mohr, b.orth}@fz-juelich.de

From December 5-7, 2006, John von Neumann Institute for Computing, IBM, and the Blue
Gene Consortium jointly held the first “Blue Gene/L Scaling Workshop” at Jülich. The aim
of this workshop was to provide participants the chance to scale their codes across an 8-rack
Blue Gene/L system. Besides the hardware, appropriate software and support personnel were
provided to accomplish this task. Jülich provided about 800,000 CPU hours on the 16,384-
processor Blue Gene/L systemJUBL over a three-day period for the scaling runs. The par-
ticipants of the workshop were selected by a peer review team. Selection criteria were (i) the
confidence that the code would scale across 8 racks, (ii) the prospect that the JUBL infrastruc-
ture (OS, compilers, libraries) would meet the user’s requests, and (iii) the scientific impact
that the code could produce. Applicants selected were paired up with assigned advisors from
Argonne National Laboratory, IBM, and NIC, who assisted in administrative (log-on, moving
data, storing data) and scaling issues. This article highlights some of the results of running,
scaling and optimising the participating applications on JUBL.

1 Introduction

In this article we summarise a selection of the results of thefirst “Blue Gene/L Scaling
Workshop” which took place at Forschungszentrum Jülich from December 5-7, 2006. The
aim of this workshop was to give both users and the support personnel from Argonne Na-
tional Lab, IBM, and JSC/NIC the opportunity to investigatethe performance and scaling
behaviour of selected applications on JUBL, the 8-rack IBM Blue Gene/L system in Jülich.

Unfortunately, the limited space here does not allow for a complete account of all
the valuable results and experiences gained during the three days of the workshop. Besides
those participants whose results are described below, others have contributed equally to the
workshop’s big success. Among them were A. Dubey from the University of Chicago, who
investigated the performance and scaling of the FLASH code from the field of astrophysics,
and A. Nishida from Chuo University, Japan, who studied the scalability of a numerical
software library for large scale scientific simulations. The performance analysis of the CFD
package XNS with SCALASCA, a tool developed at JSC, proved especially successful for
M. Nicolai and M. Probst from the group of M. Behr at RWTH Aachen University. Not
only did it result in a significant improvement of the code, italso marked the beginning
of a still ongoing, fruitful collaboration between this group and the parallel performance
analysis group at JSC.

The following sections describe the outcome of running, scaling and optimising the
four remaining participating applications. They are basedon the participants’ own work-
shop reports, collected in a JSC Technical Report1. For further details, also on the applica-
tions omitted here, please consult this reference and the references therein.

307



2 Molecular Dynamics Studies of Radiation Hard Materials

DL POLY3 is a classical molecular dynamics package developed at CCLRC Daresbury
Laboratory, from where it was brought to the workshop by I. J.Bush. Prior to the work-
shop, the code had never been run on systems with significantly more than 1000 processors.
The system investigated at the workshop was a model of radiation damage in a fluoritized
Zirconium pyrochlore. One of the native Gadolinium ions in the system was replaced by
Uranium, which was then given a velocity consistent with a 100 keV recoil after an alpha
decay. Due to the very high velocity of the Uranium ion it was necessary to study very
large supercells, and the total system size used was approximately 14.6 million particles.
The power of the Jülich Blue Gene/L allowed, for the first time, to model this system with
a realistic recoil.

TheDL POLY3 code is a totally distributed memory code which uses a link-cell al-
gorithm that scales approximately likeO(N). The various terms of the force field can be
generalised as (i) short range repulsion, (ii) Van Der Waal’s (VDW) attraction, and (iii)
Coulomb forces.

The first two are both short range terms, and are handled together inDL POLY3. Sub-
sequent references to VDW terms therefore include both these terms. Due to the short
range of these forces they are expected to scale very well with processor count due to their
spatial locality (compare halo exchange algorithms). On the other hand, Coulomb forces
are long range terms, and have to be handled differently. TheEwald sum technique used in
DL POLY3 splits the evaluation into two terms – one short ranged, one long ranged. While
the former is evaluated in real space (very similar to the VDWterms), the long range term
has to be handled differently.DL POLY3 uses the Smooth Particle Mesh Ewald (SPME)
algorithm, the key feature of which is a Fast Fourier Transform (FFT). For this DaFT is
used, a package written at Daresbury Laboratory that is novel in that it avoids performing
‘all-to-all’ operations by parallelising the individual 1D FFTs.

Results

Once ported, the code ran and scaled very well “out of the box”. The good scaling for MD
of the test system is shown in Fig. 1. All jobs were run in virtual node mode.

Of the various elements of the force field the VDW and short range Ewald terms both
scale almost perfectly, and at least for VDW terms the expected deviation from ideal be-
haviour at 16384 processors is not very apparent. As expected, the long range Ewald terms,
i.e. those terms that require an FFT, scale less well. However, given the comparatively
small size of the FFT grid,512× 512× 512, the scaling is still good.

The absolute times per time step for each of the components ofthe execution showed
that, at these processor counts and for this system, the dominant term was the long range
component of the Ewald summation. The most important result, however, was that the time
for an MD time step on 16,384 processors was sufficiently small to allow full simulations
to be performed in a realistic amount of time.

The one major problem that was experienced was I/O, which wasprohibitively slow.
This was due to the fact that, at the time of the workshop, all I/O in DL POLY3 was
performed in serial, i.e. all through one processor, and to/from formatted files. The reasons
for this were simplicity and portability of the files, and that the time taken for I/O had

308



Figure 1. Scaling ofDL POLY3 on JUBL. ”MD” shows the scaling of the total computation time, ”Link” refers
to the time taken at each time step to implement the link-cellalgorithm (and build the Verlet neighbour list), and
the remainder are the components of the force field terms outlined above.

always been small compared to the compute time. However, it became very clear during
the workshop that the large system sizes enabled by the massively parallel Blue Gene/L
require new, parallel ways of implementing I/O.

Summary

DL POLY3 was demonstrated to scale well out to 16,384 processors on Blue Gene/L. Port-
ing was straightforward. It was shown that the code runs fastenough on 8 racks to allow a
detailed scientific study of the system. Two candidates for optimisation which were found
using Xprofiler and explicit timings were the loop nest that interpolates the ionic charges
onto the regular grid, and the message passing time in the FFT.

3 Large ScaleAb Initio Calculations of Functional Materials

Ab initio Density Functional Theory (DFT) codes have become a widely used tool for the
investigation of unusual materials properties and the prediction of novel functional ma-
terials. Unlike empirical and semi-empirical methods their accuracy is not hampered by
simplifying assumptions about the interatomic interactions, so that their use becomes in-
evitable where electronic and structural properties become closely interrelated, as it is often
the case for modern functional materials. Off-the-shelf DFT codes like VASP (ViennaAb
initio Simulation Package), which was investigated at the workshop by M. E. Gruner from
the group of P. Entel at the University of Duisburg-Essen, were historically not designed to
run large problems on a vast number of processors. However, acomplete redevelopment
appears infeasible due to their complexity. The readiness of existing codes for modern mas-
sively parallel supercomputer architectures is thereforepivotal for the question whetherab
initio materials science on the mesoscopic scale will become possible in near future.

309



In previous tests it could be shown that the code scales well up to 1,024 nodes. How-
ever, further scaling was hampered by parts of the code whichmake heavy use of the
SCALAPACK eigensolverpdsyevx and the parallel 3d Fast Fourier Transforms (FFT).
One strategy to circumvent this limitation is the tackling of larger systems, where the rel-
ative amount of time spent for interprocess communication will be reduced. The option to
optimise the communication structure in the code was not projected at this stage, but may
become a target for future efforts. Therefore, three questions were at the centre of interest
during the scaling workshop: (i) Is the VASP code capable of running on 8k nodes? (ii)
How severe is the limitation of 512 MB per node for larger problems on several thousand
nodes? (iii) What is the maximum system size that can be tackled on the Blue Gene/L?

To answer these questions, realistic test systems were simulated. The first system con-
sisted of super-cells of the magnetic shape alloy Ni2MnGa of various sizes (576, 672, 720,
768, 800, 896 and 1024 atoms), sufficiently large to contain amartensitic twin boundary.
These twin boundaries can be shifted in realistic magnetic fields which gives rise to the
so-called ferromagnetic shape memory effect, which makes these alloys interesting for a
new class of magneto-mechanical actuators. In addition, calculations of large super-cells
of the dilute magnetic semiconductor ZnO:Co and GaN:Gd wereperformed. Three dif-
ferent system sizes were categorised, consisting of a totalnumber of 432, 864 and 1296
atoms. In both cases, due to the large super-cells, integration in k-space was restricted to
theΓ-point.

Results

During the workshop it became evident that only 512 MB of memory per node represent a
severe limitation. To alleviate this restriction, the coprocessor mode was used throughout
all of the calculations.

The largest system that could be simulated on one and two racks was a Ni2MnGa super-
cell consisting of 672 atoms (6720 spin-polarised valence electrons). Here, a speedup of
1.73 between one and two racks could be achieved. The largestsystem that could be tested
successfully on the full 8 racks was an 800 atom Ni2MnGa supercell comprising 8000
spin-polarised valence electrons. Here, a few self-consistency steps could be achieved,
which gave enough data for a timing analysis. On a cube (2 × 2 racks) this problem was
brought to complete self-consistency. The measured speedup between four and eight racks,
however, was only 1.22. Reasonable timing data could not be obtained for two racks and
less due to memory restrictions. However, for a previous test case (561 iron atoms), which
was not hampered by memory limitations down to 128 nodes, a speedup of 1.31 between
one and two racks was achieved, while on 1024 nodes an efficiency of 70% of the ideal
performance, extrapolated from 128 nodes, was measured. Itappears plausible to expect
an overall efficiency of above 50% for the 800 atom super-cellon the cube. For the doped
ZnO the largest system calculated consisted of 864 (7725 valence electrons) atoms which
could be computed on one rack.

Summary

From the experience gained at the workshop it was concluded that on a Blue Gene/L sys-
tem with 512 MB per node the maximum partition that can be usedefficiently is four racks.

310



The largest problems that were manageable with VASP on such an installation contained
800-900 atoms and up to 8000 (spin-polarised) valence electrons. On Blue Gene (L or P)
systems with 1 GB per node larger systems can be treated, and efficient scaling will prob-
ably be achieved even on 8 or 16 racks. Improvements in the FFTcommunication scheme,
which are planned in close cooperation with IBM, might result in significant performance
gains.

4 Turbulent Convection with Very Large Aspect Ratios

Turbulence often occurs in geometries where the lateral dimensions exceed the vertical
dimension by orders of magnitude. For example, atmosphericmesoscale layers typically
have lateral extensions of up to 1000 km and are characterised by aspect ratiosL : W :
H = 1000 : 1000 : 1.

At the workshop, J. Schumacher from the Technical University of Ilmenau studied
turbulent Rayleigh-Bénard convection, which representsone particular process in such
mesoscale layers. His three-dimensional pseudospectral simulation code advances the
Boussinesq equations for an incompressible fluid in time by means of a second-order
predictor-corrector scheme. Lateral boundary conditionsare periodic; vertical boundary
conditions are free-slip.

One of the core parts of the numerical scheme used in this simulation is the Fast Fourier
Transform (FFT). The classical parallel implementation ofthree-dimensional FFTs uses a
slab-wise decomposition of the simulation domain. For a simulation withN3 grid points,
the method allows a parallelisation on up toN processors. Due to the rather small memory
size per core, the Blue Gene/L requires avolumetricFFT which decomposes the three-
dimensional volume into cuboid-like rods and hence allows aparallelisation degree ofN2.

The prime requirement for a simulation with a large grid is that the subdomains of the
grid (including buffers and temporary storage) fit into the 512 MB of memory on a single
Blue Gene/L node. At the same time the FFT algorithm should ofcourse be scalable, i.e.
increasing the number of CPUs to solve the problem should also substantially decrease the
time-to-answer.

Results

Three FFT packages were compared during the workshop: the old slab-wise method, the
BGL3DFFT by M. Eleftheriouet al., and the P3DFFT package by D. Pekurovsky. After
some tests the P3DFFT package turned out to be the best solution in terms of performance.
Moreover, its interface and implementation met the application’s needs in an optimal way
(real-to-complex/complex-to-real).

In addition to the inclusion of the P3DFFT package, further optimisations contributed
to the improvement of the code performance. These include the optimisation of the process
topology, loop-splittings to enable code vectorization inthe calculation of the r.h.s. of the
Boussinesq equations, and the use of non-blocking point-to-point communication instead
of MPI Reduce and MPIBcast.

Further analysis indicated that with these improvements almost all of the remaining
communication overhead is related to calls to MPIAlltoallv required by the FFT algo-
rithm. They are thus the only limiting factor for strong scaling. Future improvements

311



CPUs processor mode iproc× jproc time
1024 co 32× 32 205.7 s
2048 vn 32× 64 183.3 s
4096 co 64× 64 90.66 s
4096 vn 128× 32 109.6 s
4096 vn 64× 64 118.6 s
8192 co 128× 64 60.5 s
8192 co 512× 16 74.0 s
8192 vn 128× 64 77.8 s
16384 vn 128× 128 62.6 s

Table 1. Runtime tests for the aspect ratioΓ = 32. The CPU time was measured with MPIWtime() for a loop
of 5 time steps.

of the implemenation of MPIAlltoallv will therefore have an immediate impact on the
performance of this application.

Table 4 summarizes the findings for a grid resolution intended for production runs:
Nx ×Ny ×Nz = 4096× 4096× 256 atΓ = 32. For such a large grid it turned out to be
necessary to implement some internal summation loops in double precision.

The parametersiproc andjproc in the table represent the two dimensions of the pro-
cessor grid that has to be generated for the volumetric FFTs.The differences in execution
time for coprocessor or virtual node mode are small for largeproblem sizes, which is due
to the fact the local subdomains no longer fit into the L3 cacheof a Blue Gene/L node, so
that the two cores compete for the memory bandwidth.

Summary

The use of the P3DFFT package and a number of further improvements in the communica-
tion overhead improved significantly the performance of this code on Blue Gene/L. These
efforts allowed to run production jobs on at least two racks.Since the code performance is
bound by the memory bandwidth for problem sizes of interest,VN mode does not result in
a significant speedup compared to CO mode.

5 Numerical Simulations of QCD

The objective of current projects of the QCDSF collaboration is to better constrain the ex-
trapolation of lattice results to the chiral and continuum limits by performing simulations at
more realistic quark masses and at smaller lattice spacings. This has become possible due
to substantial improvements in the Hybrid Monte Carlo (HMC)algorithm and a significant
increase in computing power.

The program investigated by H. Stüben from ZIB Berlin is called BQCD (Berlin QCD).
It is a Hybrid Monte Carlo code that simulates quantum chromodynamics (QCD) with Wil-
son gauge action and non-perturbativelyO(a) improved Wilson fermions. The program is
written in Fortran 90 and uses MPI. For Blue Gene/L the most compute intensive part has
been implemented in assembler.

312



Lattice QCD is defined on a four-dimensional regular latticewith (anti-)periodic
boundary conditions. The kernel of BQCD is a standard conjugate gradient solver with
even/odd preconditioning. Typically, 80 % of the executiontime is spent in this solver.
The dominant operation is the matrix-vector multiplication. In the context of QCD the
matrix is calledfermion matrix. This fermion matrix is sparse with eight entries per row.
The entries in rowi are the nearest neighbours of entryi of the vector.

The entries of the fermion matrix are3 × 3 complex matrices and the entries of the
vector are3× 4 complex matrices. Experience on current machines shows that the perfor-
mance of the Fortran code for the matrix-vector multiplication is about 10 % of peak, and
approximately 20 % in case of the assembler version. On the Hitachi SR8000-F1, which
was one of the main production machine for the QCDSF collaboration from 2000–2006,
the Fortran code ran at about 40 % of peak.

Parallelism of the program is achieved using domain decomposition. In the parallelised
cg-kernel ghost cells of the input vector have to be exchanged before the vector can be
multiplied with the fermion matrix. In order to scale QCD programmes up to high numbers
of processes an excellent communication network is required because the lattice volume
per core becomes small. On the other hand small lattice volumes per core improve the
utilisation of data caches and hence improve performance.

For the floating point operations of the fermion matrix multiplication the SIMD(double
hummer)instructions of the floating point units are used, which can perform four floating
point operations per clock cycle. The communication is donein parallel with the computa-
tion, so that in principle computation and communication can overlap. For the communi-
cation between nearest neighbours in three of the four directions the torus network is used.
The network is accessed from the nodes via memory-mapped fifos. Because of the simple
communication pattern (of nearest neighbour data exchangeonly), no dynamical routing
is necessary. Furthermore, each node receives the data packets in the order in which they
are needed, so that no reordering of packets is necessary. Each node sends a packet to its
neighbour one iteration before the neighbouring node needsthe data, so that the network
latency can be hidden.

In the fourth direction, which corresponds to the x-direction of the lattice, the lattice
is split between the two CPUs in one node, so that the communication can be done via
the shared memory. However, since the L1 caches are not coherent, the straightforward
approach of simply reading data from the other CPU’s memory does not work. At present,
a memory region in the L3 cache (the scratchpad area) is used,which is marked L1-caching
inhibited for data exchange between the two cores.

Results

In scaling tests during the workshop the performance of thecg-kernel was measured. To
this end the code was instrumented with timer calls, and for the kernel all floating-point
operations were counted manually.

In order to get good performance it is important that the lattice fits the physical torus
of the machine. In order to achieve this, MPI process ranks have to be assigned prop-
erly. On Blue Gene/L this can be accomplished by setting the environment variable
BGLMPI MAPPING appropriately.

The results of the performance tests are illustrated by double logarithmic plots in Fig. 2
(the dotted lines indicate linear scaling). As can be seen from the plots the Fortran/MPI

313



version exposes super-linear scaling on the483 × 96 lattice. Even the323 × 64 lattice
scales quite well given the fact that the lattice volumes percore are tiny. For the same tiny
local lattices the scaling of the assembler version is even better than that of the Fortran/MPI
version. This means that in the assembler version computation and communication really
overlap.

5.1 Summary

At the workshop it was found that the BQCD code scales up to thefull 8 racks of the
Jülich Blue Gene/L. The highest performance measured was 8.05 TFlop/s on the whole
machine. This high performance could be obtained by usingdouble hummerinstructions
and techniques to overlap communication and computation.

Figure 2. Scaling of thecg-kernel of BQCD in the Fortran 90/MPI version (left), and in the assembler version
(right).

Acknowledgments

The authors would like to thank their co-organizers from IBMand the Blue Gene Con-
sortium, all participants, and last but not least all their colleagues from JSC who helped
making this workshop a success.

References

1. W. Frings, M.-A. Hermanns, B. Mohr, B. Orth (Eds.)Blue Gene/L Scaling
Workshop 2006, Technical Report IB-2007-02, 2007. For an online version see
www.fz-juelich.de/jsc/files/docs/ib/ib-07/ib-2007-02.pdf.

314


