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We study theoretically the Mott metal-insulator transition for a system of fermionic atoms confined in a
three-dimensional optical lattice and a harmonic trap. We describe an inhomogeneous system of several
thousand sites using an adaptation of dynamical mean-field theory solved efficiently with the numerical
renormalization group method. Above a critical value of the on-site interaction, a Mott-insulating phase
appears in the system. We investigate signatures of the Mott phase in the density profile and in time-of-
flight experiments.
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Introduction.—Ultracold atoms in optical lattices offer
exciting possibilities to investigate many-particle effects
and to realize and measure models of condensed matter
physics like the Hubbard model with unprecedented con-
trol of the band structure and interaction strength.

One of the most dramatic effects of strong correlations is
the Mott transition, where strong interactions drive a sys-
tem insulating. While for bosonic atoms [1] the Mott
transition in an optical lattice has been realized a few years
ago by Greiner et al. [2], the corresponding experiment for
fermionic systems turns out to be much more difficult,
partially due to problems with cooling and due to the
need to work with two hyperfine states, to model the spin
degree of freedom. However, due to the enormous experi-
mental progress, a realization of the Mott transition in
fermionic systems is expected in the near future. For
example, recently Köhl et al. [3] succeeded to capture
interacting fermions in an optical lattice and to observe
the Fermi surface.

For the interpretation of the experiments, it is essential
to investigate the effects of the smooth external confining
potential holding the atoms in the trap. The resulting
inhomogeneities can make it more difficult to interpret
the experiments, but induce also new interesting effects,
e.g., associated with the sharp surface between metallic
and insulating regions. A frequently used approximation
(e.g., in the present context by Ref. [4]) is to describe the
trapped atoms locally by a homogeneous system called
local density approximation (LDA). However, in the pres-
ence of sharp domain walls between two phases, such an
approximation is expected to fail and a more realistic
treatment of the inhomogeneous system is necessary.

For one-dimensional (1D) systems, powerful numerical
[5,6] and analytical [4] methods exists to study theoreti-
cally the Mott transition in fermionic systems. For ex-
ample, in Refs. [4–6], quantum Monte Carlo techniques
were used to investigate the signatures of Mott phases in
the presence of an external harmonic confinement potential
for a 1D system. Rigol et al. [5,6] argued, that in one

dimension the inhomogeneities resulting from the trapping
potential essentially destroy the main signatures of Mott
phases in time-of-flight experiments.

As exact numerical methods for fermions can only be
applied to very small systems, one has to resort to approxi-
mations to calculate the properties of three-dimensional
lattices of realistic size. Here, the method of choice is the
so-called dynamical mean-field theory (DMFT) [7,8].
Within DMFT, the only approximation is to neglect non-
local contributions to the self-energy. This allows us to
map the N site lattice problem to N single-impurity
Anderson models coupled by a self-consistency condition,
see discussion below. DMFT is, for example, frequently
used to describe complex bulk materials, e.g., by combin-
ing DMFT with band-structure calculations to obtain an
ab inito description of strongly correlated materials. In a
few cases, DMFT has been employed to describe inhomo-
geneous systems [9–12] like the surface of Mott insulators
[10] or disordered materials [13].

A main problem of DMFT is the need for a reliable and
efficient method to solve the effective impurity problems.
Previous applications of DMFT to inhomogeneous systems
were using impurity solvers like a two-site approximation
[10] or slave-boson mean-field theory [13], implying se-
vere further approximations, or started from simplified
fermionic models such as the Falicov-Kimball model
[12]. We will show that one can also use efficiently one
of the most accurate impurity solvers, the numerical renor-
malization group [14,15] (NRG), to obtain reliable results
for traps containing several thousand atoms modeling a
fermionic Hubbard model.

After introducing the model and our method (DMFT for
inhomogeneous systems� NRG), we will show the result-
ing spectral functions and discuss how the transition from a
metal to a Mott-insulating phase can be seen in real-space
and time-of-flight experiments. We investigate the role of
temperature, filling, and interaction strength.

Model and Method.—We consider the fermionic
Hubbard model on a 3D-cubic lattice,
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where cyi� creates a fermion at site i with spin �, ni� �
cyi�ci� is the local density, J the nearest-neighbor tunneling
matrix element, and U is the effective on-site interaction.
The lattice distance, is set to unity. We include 4224 sites
with a distance ri � R � 10 from the center of the trap,
located in the middle of 8 central sites. The strength of the
confining harmonic potential V0 � 0:276J is chosen such
that all sites with ri > R are unoccupied and can be ne-
glected. Using the symmetry of the cubic lattice, one has to
deal with only 118 inequivalent sites.

The basic idea of DMFT [7] is to pick a single site of the
lattice (the ‘‘impurity’’ i) and model the effect of all the
other sites by a noninteracting bath of fermions. The
resulting Anderson impurity model is defined by the local
interaction U and the hybridization of the impurity to the
bath. The latter is encoded in the U � 0 Green’s function,
G0

And;i�!�. For this model, one determines the local self-
energy �i�!� (see below). From the �i�!�, one can con-
struct the lattice Green’s function

 G�1
lat �!�ij � �i;j�!��� �i�!� � V0r2

i � � Jij; (2)

where Jij � J if sites i and j are nearest neighbors and 0
otherwise. The bath of each impurity is then determined
from the requirement that at each site the lattice Green’s
function and the Green’s function of the impurity model
coincide, Glat�!�ii � �G

0
And;i�!�

�1 ��i�!���1, thus es-
tablishing a self-consistency loop. The scheme described
above can be derived using as the only approximation that
the self-energy is a local quantity. Both the nonlocal single
particle quantum mechanics of fermions and all local
effects of strong interactions are correctly described within
DMFT.

A main difficulty of DMFT is, however, an accurate
calculation of the self-energy of the Anderson impurity
model. For this, we use the NRG [16], see Ref. [15] for a
description of the method. To obtain efficiently Glat from
an inversion of Eq. (2), it is essential to use the full
symmetry of the cubic lattice.

In this Letter, we restrict ourselves to paramagnetic
solutions which simplifies the rather challenging numerics
considerably. Also experimentally, it is very difficult to
reach the low temperatures below which magnetism is
expected. Furthermore, we do not expect that magnetic
order will change the density profiles or time-of-flight
pictures considerably.

Results.—Figure 1 shows how the number of fermions
per site evolves for increasing interactions U=J, which
push the fermions away from the center of the trap. For
the chosen parameters, we obtain for U=D � 0, 1, 2 (D �
6J is half the bandwidth) a band insulator in the center of
the trap and a metal further outside. For the homogeneous
system, the critical interaction is given by Uc=D � 2:52,

but already forU=D � 2, the compressibility close to half-
filling is strongly reduced as can be seen in a shoulder in
the curve for hnii 	 1. ForU=D 
 3, the incompressibility
of the Mott-insulating state, @n=@� � 0, manifests itself
in a plateau. The thickness of this Mott-insulating ‘‘onion
shell’’ increases for increasing U eliminating the metallic
phase in the center for U=D � 4:5. The insets of Fig. 1
show how the Mott-insulating region at U=D � 4:5
shrinks again when the number of fermions in the trap is
reduced and how thermal excitations destroy the Mott
plateau.

Our method allows us to study the spatial dependence of
the spectral functions. While this quantity is difficult to
measure for atoms in a trap, it is a highly sensitive probe of
the metal-insulator transition. Figure 2 shows how the local
spectral function evolves when moving from the center to
the edge of the trap atU=D � 4:5. In the insulating regime,
the spectral function A�!� is characterized by the two
Hubbard bands with equal weight, and A�! � 0� becomes
very small (it never vanishes exactly as atoms from the
metallic regions can tunnel into the insulator). As a func-
tion of the distance from the center, the Hubbard bands
shift due to the harmonic potential. When the Fermi energy
starts to merge with one of the Hubbard bands, a sharp
quasiparticle peak emerges at ! � 0 for sufficiently low T
(see inset).

In a time-of-flight experiment, the two-dimensional pro-
jection, ntof

k �
R
nkdkz=�2��, of the three-dimensional

momentum distribution
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FIG. 1 (color online). The number of fermions hnii per lattice
site, as a function of the distance r to the origin. The signature of
the Mott-insulating phase [7] is the presence of a plateau with
hnii � 1. Note that there are inequivalent sites with different
occupation but the same r. Main panel: Crossover from weak to
strong interactions for a fixed number of N � 2869 particles in
the trap at T � 0, U � 6J. Upper inset: Dependence on the
number of particles for U � 4:5D, T � 0. Lower inset: T
dependence for U � 4:5D, N � 2869 (the T � 0 and T �
0:13D curves lie on top of each other).
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of the fermions can be measured [2,17]. Here, f�!� is the
Fermi function, and we have normalized nk such thatR
nk

d3k
�2��3 �

R
ntof

k
d2k
�2��2 � 1.

Figure 3 shows ntof
k . For a quantitative analysis of the

results and for comparison to (future) experiments, we

suggest to plot ntof
k as a function of the tight-binding

dispersion �2d
k � �2J�coskx � cosky�, see Fig. 4. Surpris-

ingly, each curve collapses to good approximation to a
single line, despite the fact that for a given �2d

k , a range
of ntof

k exists (as is noticeable in the small scatter of the
curves for nk). Here, it is useful to remember that within
DMFT, nk is only a function of �k for the homogeneous
system. Therefore, if a LDA were exactly valid, the col-
lapse to a single curve would be perfect. Hence, our results
suggest, that LDA is a very good approximation for the
analysis of time-of-flight pictures (but not for other quan-
tities, see below).

It is an interesting but difficult question whether this
effect is partially an artifact of DMFT which neglects the
momentum dependence of the self-energy. While for the
experimentally relevant temperature range this is probably
a very good approximation, it is expected to fail very close
to the metal-insulator transitions at low T.

Qualitatively, the results of Fig. 4 reflect that localized
electrons in the band- or Mott-insulating phase are char-
acterized by a momentum-independent nk, while in the
homogeneous metallic phase, nk displays a jump at the
Fermi momentum with a height given by the quasiparticle
weight Z. As the effective local Fermi momentum varies
smoothly within the trap, all jumps are smeared out.

FIG. 3 (color online). Momentum distribution ntof
k for U=D �

0, 2, 3, 4.5. Both in the predominantly band-insulating phase
(U=D � 0) and Mott-insulating phase (U=D � 4:5), the curves
are considerably flatter than for U=D � 2, 3 where most fermi-
ons are in the metallic phase.
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FIG. 4 (color online). nk (left panel) and ntof
k (right panel)

plotted as a function of �k � �2J�coskx � cosky � coskz� and
�2d

k � �2J�coskx � cosky�, respectively, for different values of
U, N, and T (upper, middle, and lower panels, respectively). We
have sampled discretized k-values of the entire first Brillouine
zone, k � �=10�nx; ny; nz�, nx;y;z � �10; . . . ; 10. For different
k with the same �k, a range of nk exists (visible, e.g., in the
scatter of the black dashed curves in the left panels). This spread
is, however, tiny; to a good approximation, the data collapse to
lines. Inset: �n � n0;0;0 � n�;�;� (and �ntof � ntof

0;0 � n
tof
�;�) as a

function of U. �n and �ntof are largest for the predominantly
metallic phases and smallest for phases with a large band- (small
U) or Mott-insulating (large U) regions.
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FIG. 2 (color online). Local spectral functions in the Mott-
insulating phase (U � 4:5D, N � 2869) for two different T for
lattice points with coordinates (x, 1=2, 1=2). Left inset: The
coherence peak at the Fermi energy, characteristic for a strongly
correlated metal, vanishes with increasing T. Right inset: Close
to edge of the atomic cloud, where the potential becomes steep,
(almost) localized states are visible.
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However, the slope of n��k� or the difference �ntof �

ntof
0;0 � n

tof
�;� is still a good measure of how metallic or

insulating the system is. The inset of Fig. 4 describes the
evolution from a mainly band-insulating via a dominately
metallic to a Mott-insulating regime when U=D is in-
creased. Similarly, the middle panel of Fig. 4 shows how
�ntof increases when at largeU=D, the number of particles
and therefore the size of the Mott-insulating region is
reduced (compare with upper inset of Fig. 1). For increas-
ing temperature (lower panel of Fig. 4), the destruction of
quantum coherence leads to a flattening of ntof

k . Note that
ntof

k is more sensitive to changes of T compared to hnii, see
Fig. 1.

Conclusions.—In this Letter, we investigated the signa-
tures of the Mott transition of fermions in an optical trap
using a local approximation to the self-energy (space-
resolved DMFT� NRG) which allows us to treat several
thousand atoms. The clearest signature of a Mott phase is a
plateau in the density profile n�r� of the atoms, see Fig. 1.
These plateaus are, however, washed out if only the col-
umn density,

R
dzn�r�, which can be measured directly, is

considered (not shown). The Mott transition is more diffi-
cult to observe in a time-of-flight experiment. However, the
insets of Fig. 4 show that a characteristic flattening of ntof

k
can be seen when a large fraction of the trap becomes a
band or Mott insulator.

Our calculations did not rely on a LDA which allows us
to investigate whether this widely used approximation is
valid in the present context. It turns out that both density

profiles and TOF experiments are rather well described by
LDA. As discussed in the introduction, LDA is expected
not to be valid close to a sharp domain boundary. Indeed,
Fig. 5 shows that the LDA fails completely to describe the
low-energy excitation spectrum at the boundary of the
Mott-insulating region. The coherence peak at the Fermi
energy arises due to the penetration of the metallic phase
into the Mott insulator via the Kondo effect.

For the future, it will be interesting to investigate the
effects of magnetism. In systems with a population imbal-
ance, we expect that the majority spin will accumulate in
the Mott-insulating regions. These effects will be studied
in a forthcoming publication.
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[3] M. Köhl et al., Phys. Rev. Lett. 94, 080403 (2005).
[4] X.-J. Liu, P. D. Drummond, and H. Hu, Phys. Rev. Lett.

94, 136406 (2005).
[5] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T.

Scalettar, Phys. Rev. Lett. 91, 130403 (2003).
[6] M. Rigol, R. T. Scalettar, P. Sengupta, and G. G. Batrouni,

Phys. Rev. B 73, 121103 (2006).
[7] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[8] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).
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FIG. 5 (color online). Local spectral function of two non-
equivalent lattice points at distance 7.794 from the origin at the
boundary of the Mott-insulating region (T � 0:0014D, U �
4:5D). Here, the LDA (dot-dashed line) fails completely to
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