TY  - JOUR
AU  - Rüdiger, A.
AU  - Waser, R.
TI  - Size effects in ferroelectric nanostructures
JO  - Journal of alloys and compounds
VL  - 449
SN  - 0925-8388
CY  - Lausanne
PB  - Elsevier
M1  - PreJuSER-61270
PY  - 2008
N1  - Record converted from VDB: 12.11.2012
AB  - Ferroelectrics are among the most advanced candidates of fast non-volatile memory materials. How do the properties of the commonly used perovskites such as PbTiO3, Pb(ZrxTi1-x)O-3 (PZT) and BaTiO3 change with size? Is there a fundamental limit showing up below which ferroelectricity irrevocably ceases? While the operating voltage as the predominant driving force for commercial applications shifted the thickness down to a few unit cells, ferroelectrics are now on the verge of true nanoscale integration of laterally confined structures. Top-down, bottom-up approaches and their combination provide samples far below 100 nm and indicate that the interaction of electrode and ferroelectric becomes increasingly relevant in terms of strain, screening of the depolarization field and fatigue resistance. As the qualitative understanding of nanoscale ferroelectricity advances the ferroelectric limit appears to be below 10 nm thus paving the road for further miniaturization. (C) 2007 Published by Elsevier B.V.
KW  - J (WoSType)
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000252737500002
DO  - DOI:10.1016/j.jallcom.2005.12.133
UR  - https://juser.fz-juelich.de/record/61270
ER  -