001     61270
005     20180211183331.0
024 7 _ |2 DOI
|a 10.1016/j.jallcom.2005.12.133
024 7 _ |2 WOS
|a WOS:000252737500002
037 _ _ |a PreJuSER-61270
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Metallurgy & Metallurgical Engineering
100 1 _ |a Rüdiger, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB26957
245 _ _ |a Size effects in ferroelectric nanostructures
260 _ _ |a Lausanne
|b Elsevier
|c 2008
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Alloys and Compounds
|x 0925-8388
|0 3020
|y 1
|v 449
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Ferroelectrics are among the most advanced candidates of fast non-volatile memory materials. How do the properties of the commonly used perovskites such as PbTiO3, Pb(ZrxTi1-x)O-3 (PZT) and BaTiO3 change with size? Is there a fundamental limit showing up below which ferroelectricity irrevocably ceases? While the operating voltage as the predominant driving force for commercial applications shifted the thickness down to a few unit cells, ferroelectrics are now on the verge of true nanoscale integration of laterally confined structures. Top-down, bottom-up approaches and their combination provide samples far below 100 nm and indicate that the interaction of electrode and ferroelectric becomes increasingly relevant in terms of strain, screening of the depolarization field and fatigue resistance. As the qualitative understanding of nanoscale ferroelectricity advances the ferroelectric limit appears to be below 10 nm thus paving the road for further miniaturization. (C) 2007 Published by Elsevier B.V.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a ferroelectric
653 2 0 |2 Author
|a piezoelectric
653 2 0 |2 Author
|a atomic force microscopy
653 2 0 |2 Author
|a FeRAM
700 1 _ |a Waser, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.jallcom.2005.12.133
|g Vol. 449
|q 449
|0 PERI:(DE-600)2012675-X
|t Journal of alloys and compounds
|v 449
|y 2008
|x 0925-8388
856 7 _ |u http://dx.doi.org/10.1016/j.jallcom.2005.12.133
909 C O |o oai:juser.fz-juelich.de:61270
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)96124
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21