000061325 001__ 61325
000061325 005__ 20180211172545.0
000061325 0247_ $$2pmid$$apmid:18312541
000061325 0247_ $$2DOI$$a10.1111/j.1469-8137.2008.02368.x
000061325 0247_ $$2WOS$$aWOS:000254385100013
000061325 037__ $$aPreJuSER-61325
000061325 041__ $$aeng
000061325 082__ $$a580
000061325 084__ $$2WoS$$aPlant Sciences
000061325 1001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b0$$uFZJ
000061325 245__ $$aPhotosynthesis can be enhanced by lateral CO2 diffusion inside leaves over distances of several millimeters
000061325 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2008
000061325 300__ $$a335 - 347
000061325 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061325 3367_ $$2DataCite$$aOutput Types/Journal article
000061325 3367_ $$00$$2EndNote$$aJournal Article
000061325 3367_ $$2BibTeX$$aARTICLE
000061325 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061325 3367_ $$2DRIVER$$aarticle
000061325 440_0 $$04600$$aNew Phytologist$$v178$$x0028-646X
000061325 500__ $$aRecord converted from VDB: 12.11.2012
000061325 520__ $$aThis study examines the extent to which lateral gas diffusion can influence intercellular CO(2) concentrations (c(i)) and thus photosynthesis in leaf areas with closed stomata. Leaves were partly greased to close stomata artificially, and effects of laterally diffusing CO(2) into the greased areas were studied by gas-exchange measurement and chlorophyll fluorescence imaging. Effective quantum yields (Delta F/F(m)') across the greased areas were analysed with an image-processing tool and transposed into c(i) profiles, and lateral CO(2) diffusion coefficients (D(C'lat)), directly proportional to lateral conductivities (), were estimated using a one-dimensional (1D) diffusion model. Effective CO(2) diffusion distances in Vicia faba (homobaric), Commelina vulgaris (homobaric) and Phaseolus vulgaris (heterobaric) leaves clearly differed, and were dependent on D(C'lat), light intensity, [CO(2)], and [O(2)]: largest distances were approx. 7.0 mm for homobaric leaves (with high D(C'lat)) and approx. 1.9 mm for heterobaric leaves (low D(C'lat)). Modeled lateral CO(2) fluxes indicate large support of photosynthesis over submillimeter distances for leaves with low D(C'lat), whereas in leaves with large D(C'lat), photosynthesis can be stimulated over distances of several millimeters. For the plant species investigated, the surplus CO(2) assimilation rates of the greased leaf areas (A(gr)) differed clearly, depending on lateral conductivities of the respective leaves.
000061325 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000061325 588__ $$aDataset connected to Web of Science, Pubmed
000061325 650_2 $$2MeSH$$aCarbon Dioxide: metabolism
000061325 650_2 $$2MeSH$$aCommelina: metabolism
000061325 650_2 $$2MeSH$$aDiffusion
000061325 650_2 $$2MeSH$$aLight
000061325 650_2 $$2MeSH$$aModels, Biological
000061325 650_2 $$2MeSH$$aPhaseolus: metabolism
000061325 650_2 $$2MeSH$$aPhotosynthesis: drug effects
000061325 650_2 $$2MeSH$$aPhotosystem II Protein Complex: metabolism
000061325 650_2 $$2MeSH$$aPlant Leaves: metabolism
000061325 650_2 $$2MeSH$$aVicia faba: metabolism
000061325 650_7 $$00$$2NLM Chemicals$$aPhotosystem II Protein Complex
000061325 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide
000061325 650_7 $$2WoSType$$aJ
000061325 65320 $$2Author$$achlorophyll fluorescence imaging
000061325 65320 $$2Author$$agas diffusion model (1D)
000061325 65320 $$2Author$$aheterobaric leaves
000061325 65320 $$2Author$$ahomobaric leaves
000061325 65320 $$2Author$$aimpact on photosynthesis
000061325 65320 $$2Author$$alateral CO2 diffusion
000061325 7001_ $$0P:(DE-Juel1)VDB71931$$aChavarría-Krauser, A.$$b1$$uFZJ
000061325 7001_ $$0P:(DE-Juel1)VDB72237$$aCloos, K.$$b2$$uFZJ
000061325 7001_ $$0P:(DE-Juel1)129394$$aScharr, H.$$b3$$uFZJ
000061325 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b4$$uFZJ
000061325 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b5$$uFZJ
000061325 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/j.1469-8137.2008.02368.x$$gVol. 178, p. 335 - 347$$p335 - 347$$q178<335 - 347$$tThe @new phytologist$$v178$$x0028-646X$$y2008
000061325 8567_ $$uhttp://dx.doi.org/10.1111/j.1469-8137.2008.02368.x
000061325 909CO $$ooai:juser.fz-juelich.de:61325$$pVDB
000061325 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000061325 9141_ $$y2008
000061325 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061325 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000061325 970__ $$aVDB:(DE-Juel1)96282
000061325 980__ $$aVDB
000061325 980__ $$aConvertedRecord
000061325 980__ $$ajournal
000061325 980__ $$aI:(DE-Juel1)IBG-2-20101118
000061325 980__ $$aUNRESTRICTED
000061325 981__ $$aI:(DE-Juel1)IBG-2-20101118
000061325 981__ $$aI:(DE-Juel1)ICG-3-20090406