001     61424
005     20200402210454.0
024 7 _ |2 pmid
|a pmid:17972068
024 7 _ |2 DOI
|a 10.1007/s00216-007-1647-7
024 7 _ |2 WOS
|a WOS:000252417800008
037 _ _ |a PreJuSER-61424
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Biochemical Research Methods
084 _ _ |2 WoS
|a Chemistry, Analytical
100 1 _ |a Mach, T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion
260 _ _ |a Berlin
|b Springer
|c 2008
300 _ _ |a 841 - 846
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Analytical and Bioanalytical Chemistry
|x 1618-2642
|0 8664
|v 390
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A microfluidic device was designed allowing the formation of a planar lipid bilayer across a micron-sized aperture in a glass slide sandwiched between two polydimethylsiloxane channel systems. By flushing giant unilamellar vesicles through a 500-microm-wide channel above the hole, we were able to form a planar lipid bilayer across the hole, resulting in a giga-seal. We demonstrate incorporation of biological nanopores into the bilayer. This miniaturized system offers noise recordings comparable to open head-stage noise (under 1 pA RMS at 10 kHz), fast precision perfusion on each side of the membrane and the use of nanoliter analyte volumes. This technique shows a promising potential for automation and parallelization of electrophysiological setups.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Cytoplasm: metabolism
650 _ 2 |2 MeSH
|a Dimethylpolysiloxanes: chemistry
650 _ 2 |2 MeSH
|a Electrochemistry: methods
650 _ 2 |2 MeSH
|a Electrophysiology: instrumentation
650 _ 2 |2 MeSH
|a Electrophysiology: methods
650 _ 2 |2 MeSH
|a Equipment Design
650 _ 2 |2 MeSH
|a Ions
650 _ 2 |2 MeSH
|a Lipid Bilayers: chemistry
650 _ 2 |2 MeSH
|a Liposomes: chemistry
650 _ 2 |2 MeSH
|a Microfluidic Analytical Techniques
650 _ 2 |2 MeSH
|a Miniaturization
650 _ 2 |2 MeSH
|a Nanotechnology: methods
650 _ 2 |2 MeSH
|a Patch-Clamp Techniques
650 _ 2 |2 MeSH
|a Perfusion
650 _ 2 |2 MeSH
|a Silicones: chemistry
650 _ 2 |2 MeSH
|a Solvents: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Dimethylpolysiloxanes
650 _ 7 |0 0
|2 NLM Chemicals
|a Ions
650 _ 7 |0 0
|2 NLM Chemicals
|a Lipid Bilayers
650 _ 7 |0 0
|2 NLM Chemicals
|a Liposomes
650 _ 7 |0 0
|2 NLM Chemicals
|a Silicones
650 _ 7 |0 0
|2 NLM Chemicals
|a Solvents
650 _ 7 |0 63148-62-9
|2 NLM Chemicals
|a baysilon
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a microfluidics
653 2 0 |2 Author
|a planar bilayer
653 2 0 |2 Author
|a electrophysiology
653 2 0 |2 Author
|a membrane channel
700 1 _ |a Chimerel, C.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Fritz, J.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Fertig, N.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Winterhalter, M.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Fütterer, C.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB74440
773 _ _ |a 10.1007/s00216-007-1647-7
|g Vol. 390, p. 841 - 846
|p 841 - 846
|q 390<841 - 846
|0 PERI:(DE-600)1459122-4
|t Analytical and bioanalytical chemistry
|v 390
|y 2008
|x 1618-2642
856 7 _ |u http://dx.doi.org/10.1007/s00216-007-1647-7
909 C O |o oai:juser.fz-juelich.de:61424
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INB-1
|l Zelluläre Biophysik
|d 31.12.2008
|g INB
|0 I:(DE-Juel1)VDB804
|x 0
970 _ _ |a VDB:(DE-Juel1)96520
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)ICS-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21