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Hydrodynamics of Active Mesoscopic Systems
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E-mail: {j.elgeti, g.gompper}@fz-juelich.de

The dynamics of active mesoscopic systems is studied by multi-particle collision dynamics,
a mesoscale hydrodynamic simulation technique. Sperm motion serves as a model system
par excellence. The sperm tail is modelled by a crane-like structure. It is shown that helical
trajectories are generated by a chiral structure of the sperm. The connection between sperm
geometry and parameters of the trajectory is determined.

1 Introduction

Many eucaryotic cells and bacteria move and navigate actively in their environment. Some
well-known examples are E.coli, which swims by a rotating helical filament in search
for food, fibroblasts, which crawl to close a wound, and spermcells, which swim with a
beating flagellum to find the egg. The catalog of cell motion islong, each form especially
suited for the given task of the cell.

Cell crawling, where cells adhere to surfaces and extend filopodia to pull themselves
forward, is a slow process, with typical velocities around 10 µm/min. We are interested
here in the faster forms of mesoscopic swimming. Sperm cellsare the model systems par
excellence, with swimming velocities around 50µm/s. Swimming on mesoscopic length
scales of nano- to micro-meters, is a lot different than on the macroscopic length scales
familiar to us1. Hydrodynamics is in general described by the Navier Stokesequation. The
Reynolds numberRe = ρul/η, whereρ is the density andη the viscosity of the fluid,
andu andl are characteristic length and velocity scales, determinesthe importance of the
non-linear inertia terms. In the low Reynolds number regime, viscous forces dominate over
inertia, leading to the linear and time-reversible Stokes equation. The consequences of a
low Reynolds number are quite surprising. For example, a coloured drop can be deposited
in a high-viscosity fluid between two concentric cylinders.When the inner cylinder is
turned several times to mix the fluids, and susequently the same number of times in the op-
posite direction, the result isnot a homogeneous mixture – instead the drop is reformed!2.
This effect renders time-reversible swimming mechanisms impossible. A nice review of
swimming at low Reynolds numberscan be found in Ref.1.

Sperm cellspropel themselves forward by a snake-like motion of their tail, the flagel-
lum, towards the egg. The best-known example is clearly human sperm, but almost all
higher species, from the sea urchin to the elephant, producesperm. These sperm all look
remarkably alike. The flagellum may have a different length,but its underlying cytoscele-
tal structure is well preserved throughout animal live. Thedirection of sperm motion is
controlled by chemotaxis, and has been studied extensively. Recently, the biochemical sig-
naling cascade of chemotaxis of Sea Urchin spermatozoa has been unraveled3. Our work
is focused on thehydrodynamiceffects in these systems.
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Cilia are hair-like extensions from the cell that propel fluid by a whip-like motion. Cilia
are even more abundant in nature than sperm. The Paramecium is covered with thousands
of cilia to propel it through the fluid, the mammalian lung is equipped with cilia to propel
mucus out of the system, and in the female reproductive tractcilia move the egg.

Typically cilia appear in large arrays, so that hydrodynamic interactions between mul-
tiple active compounds play an essential role. It has been proposed, but not yet proven,
that hydrodynamic interactions lead to metachronal waves,a self organized pattern found
on ciliated surfaces. In a large array, cilia do not beat synchronously or randomly, but in a
well defined wave-like pattern.

Activity on mesoscopic length scalesis what is uniting these systems. They consist of
intrinsically active, micrometer-sized filaments in fluid suspension. Activity is not imposed
by outside fields, but generated within the objects themselves.

2 Mesoscale Hydrodynamics

Hydrodynamics plays an essential role in mesoscopic systems. Clearly the systems are too
large (severalµm) to model the water explicitly. Furthermore the hydrodynamics has only
to be resolved on the relevant length scales of the system. This calls for a coarse-grained
description of the fluid.

Several mesoscale simulation techniques to describe the hydrodynamics of complex
fluids have been proposed in recent years, such as Lattice-Boltzmann, Dissipative Particle
Dynamics and Multi-Particle-Collision Dynamics. The basic idea in all these approaches
is to employ a highly simplified dynamics on the microscale, but to respect the relevant
conservation laws for mass, momentum and energy, such that hydrodynamical behaviour
emerges naturally on larger length scales.

Multi-Particle Collision Dynamics(MPC) is one such technique4–6. In MPC, the fluid
is represented byN point particles in continuous space. The particles travel with continu-
ous velocities, and interact with a coarse-grained multi-particle interaction. The dynamics
evolves in two steps. In thestreaming step, the particles move ballistically for a collision-
timeh,

~ri(t+ h) = ~ri(t) + h~vi(t). (1)

In the collision step, the particles are sorted into the cells of a cubic lattice with lattice
constanta and their velocities, relative to the centre-of-mass velocity of all particles in the
cell, are rotated around a random axis by an angleα,

~vi(t+ h) = ~vcm(t) + R(~vi(t)− ~vcm(t)), (2)

whereR is a rotation matrix. The direction of rotation is chosen independently for each box
at each time step, while the rotation angle is typically constant and used as a parameter to
tune viscosity and Schmidt numberSc = η/ρD, the ratio of momentum to mass diffusivity
(D is the diffusion constant). It has been shown that large collision angles and small time
steps are best suited for simulating fluid-like behaviour atlow Reynolds numbers7, 8.

To ensure Galilean invariance, the collision grid has to be shifted between subsequent
collision steps6, 9.
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Figure 1. The axoneme is modelled as three polymer rods, interconnected by harmonic springs. Bond length
lb = a/2, lc = 1/

√
2.

Both, the collision step and the streaming step conserve momentum and energy explic-
itly, so that hydrodynamic behaviour emerges automatically on large length scales. Due to
the particle-based description of the fluid, coupling to other embedded mesoscale objects
is straightforward. In particular Molecular Dynamics is well suited to simulate immersed
objects like polymers or vesicles.

One big advantage of this method is its computational efficiency, due to the simple
interactions between the particles. Furthermore, the largest part of the iterations are inde-
pendent of each other and the interactions are local, thus causing the algorithm to scale
very well on parallel machines.

This method is by now widely in use, for example in studies of polymers and star-
polymers under shear flow10 and vesicles or red blood cells in flow11, 12.

3 Sperm Model

Sperm cells consist of three parts. The head, containing thenucleus where the genetic
information is stored, the beating tail that propels the sperm through the fluid and the
midpiece in between. Of course more structures and substructures can be identified, but
these are not important for their hydrodynamic properties.

The beating tail, i.e. the axoneme, can be well described as an active elastic rod. We
model the axoneme with a crane-like structure (see Fig 1). Three semi-flexible rods are
interconnected by springs to obtain a three-dimensional structure with well-suited elas-
tic properties. The three-fold structure allows to impose an internal-active and directed
bending by changing the rest lengths of the individual bonds, thus imposing a spontaneous
directed curvature onto the structure.

The final tail structure contains 100 monomeres per rod, which are thusSl = 50 a
long. A spherical head is attached in front. For propulsion,a propagating sine-wave is
imposed on the tail behind a short (10a) passive midpiece. In experiments, helical motion
of sperm in a bulk fluid is observed, requesting some form of chirality of the sperm due
to symmetry reasons. To impose this chirality, the midpiececan be bent by a predefined
bending parameterb, see Fig. 4. The bending paramterb measures how much one rod of
the midpiece is shortened, relative to its straight length.At b = 9% the midpiece forms
approximately a quarter circle. Since this bent is imposed on a different rod than the beat
pattern, it bends the head out of the beating plane, creatingchirality.

Coupling to hydrodynamics is done by immersing the structure in a MPC fluid and
including monomers in the collision step, as suggested in Ref.13 for polymers. To suffi-
ciently resolve the hydrodynamics in MPC, the beat amplitude of the tail has to exceed a
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few MPC collision boxes. This requires a large sperm structure of lengthSl = 50 a, and
correspondingly large simulation boxes. For bulk simulations, we simulate703 collision
boxes with periodic boundary conditions. Because each box contains 10 fluid particles,
this corresponds to 3.5 million particles, and consequently demands large computational
resources.

4 Hydrodynamics of Thin Rods

The tail of a sea urchin spem cell is50µm long, and less than0.5µm in diameter. The hy-
drodynamics of the tail should therefore be well described by a sequence of thin rods. Thin
rods have an anisotropic friction with the solvent, where the friction force perpendicular to
the rod,~F⊥ is larger then parallel,~F‖.

Intuitively it is obvious that dragging a rod perpendicularto its orientation is more
difficult than parallel, and the physical origin of this behaviour is easy to understand. If
moved parallel to its orientation, most of the rod can travelin the wake of the tip, thus
reducing friction.

We define rod-drag coefficients for Stokes flow by

F‖ = γ‖v‖ (3)

F⊥ = γ⊥v⊥ (4)

with the subscript‖ for vector components parallel to the rod, and⊥ for perpendicular
components. These friction coefficients are related to the diffusion coefficientsD‖,⊥ via

γ‖,⊥ =
kBT

D‖,⊥
(5)

Calculating the diffusion coefficients for a rod-like colloid of finite length is not trivial, but
approximations can be found in the literature. Tirado, Martinez and Garcia de la Torre14

reviewed some theoretical approaches. The different theories agree on

2πηLrD‖
kBT

= ln(Lr/dr) + ν‖ (6)

4πηLrD⊥
kBT

= ln(Lr/dr) + ν⊥. (7)

whereLr is the length, anddr the diameter of the rod. Differences between theories are
found concerning the correction functionsν⊥/‖. One approximation for2 < Lr/dr < 30
is

ν⊥ = 0.839 + 0.185dr/Lr + 0.233 (dr/Lr)
2 (8)

ν‖ = −0.207 + 0.980dr/Lr − 0.133 (dr/Lr)
2 (9)

These results can be used to calculate the swimming velocityof sperm. Gray and
Hancock15 used this approach to calculate the swimming velocity of sperm cells. After
assuming a sine-shaped beat-pattern,γ⊥ = 2γ‖, and some other approximations, they
obtained the swimming speed

v̄x =
ωπb2

λ

(
1 +

4π2b2

λ2
−
√

1 +
2π2b2

λ2

CH

nλγ‖

)−1

(10)
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whereω is the angular frequency,λ the wavelength andb the amplitude of the beat. The
number of waves present on the tail is denoted byn,CH is the drag coefficient of the head.
For a spherical head of radiusRh and a thin tail of radiusd, it is possible to approximate

CH

γ‖
= 3Rh

[(
log

d

2λ

)
+

1

2

]
. (11)

Because a pre-defined beat shape has been used, the viscosityη does not influence the
swimming speed.

Like the swimming velocity of sperm, other mesoscopic systems of slender bodies can
be described in this fashion. Always, either the assumptionγ⊥ = 2γ‖ or the ratioγ⊥/γ‖
play an essential role. Sperm, for example, would not move ifγ⊥ = γ‖. This shows the
importance and effects of the anisotropic friction of thin rods. To compare our results to
slender body theory, and as a suitability test of our model, we performed simulations to
calculateγ⊥ andγ‖ in an MPC fluid.

For this purpose we keep the structure, presented above as the sperms tail, in the centre
of a simulation box and expose it to a constant flow. The friction coefficients are deter-
mined by averaging the forces on the structure. A uniform flowfield imposed sufficiently
far from the rod by assigning Gaussian-distributed velocities, with an average of̄v in the
flow direction, to the solvent particles in a layer of thicknes 1a perpendicular to the flow
direction.

The drag force is found to be linear with̄v at least up tōv ≈ 0.3
√
m/kbT . We chose

v̄ = 0.1
√
m/kbT , well within the linear regime for the remaining simulations.

Fig. 2 shows as an example the friction coefficientsγ‖ andγ⊥ as a function of scaled
inverse linear system size (Lr/S). To determine the friction coefficients at infinite dilution,

 450
 500
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 600
 650
 700
 750
 800
 850
 900
 950

 0  0.1  0.2  0.3  0.4  0.5

γ

Lr/S

γ⊥ 
γ||

Figure 2. Friction coefficientsγ‖ andγ⊥ as a function of scaled inverse linear system sizeLr/S. System size
S3 varies between(20 a)3 and(100 a)3. Rod length is10 a. MPC parameters areα = 130◦, ρ = 10, h =

0.05
p

ma2/kBT .

we fitted a linear function to the data (see Fig. 2), and used the extrapolation to infinite
system size. The strong finite-size effects demand large systems and limit the range of
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accessible rod lengths. The largest simulated systems usedare for rods with a length of
20 a with 1103 boxes, or 13 million particles.

Considering the strong finite-size effects, and that the polymer rods are weakly pene-
trable for the fluid, the agreement with theory is surprisingly good (see Fig. 3). The fit in

 200

 400
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 1000

 1200

 1400

 5  10  15  20  25

γ

Lr/a

γ⊥ 
γ||

Figure 3. Friction coefficientsγ‖ andγ⊥ as a function of rod lengthLr. The solid line is a fit of the theory
(Eqs.(6) and (7)) to the data ofγ⊥, resulting indr ≈ 0.9 a. This value was then also used to plotγ‖. Points are
results of finite-size fits, as described in the text.

Fig. 3 resulted in a rod diameter ofdr ≈ 0.9 a, which is quite reasonable. Furthermore,
we see from Fig. 3 that at these low aspect ratiosγ⊥/γ‖ < 2. Note that also for sea urchin
sperm tails,Lr/dr ≈ 100. The effective aspect ratio is considerably smaller due to the
wave lengthλ < Lr.

5 Sperm Dynamics

We present here our results for bulk motion of sperm cells. Our aim is to investigate the
effect of midpiece curvature and sperm chirality on the bulkmotion. In bulk fluid we
observe helical as well as almost straight trajectories, depending on the degree of chirality.
Weakly bent sperm swim on a narrow helix. The tail is always close to the trajectory, just
the head performs some sideways motions. Strongly bent sperm swim in a larger helix
with the head near the centre of the helix and the tail pointing outward (see Fig. 4).

Besides its position and orientation in space, a helix has two independent parameters;
typically these are the pitchp and the radiusr. Additionally the sperm cells move with a
velocityv on these helical trajectories. Some of these parameters aremore prone to thermal
fluctuations then others. We found that the curvaturec, the tangential velocityv and the
rotation frequencyω are the most reliable observables (see Fig. 5). Other parameters,
for example the helix radiusr, the velocity along the centrelinevz and the pitchp are
connected to the tangential velocityv, angular frequencyω and curvaturec via

r =
cv2

ω2
vz = ±

√
v2 − c2v4 p = vz2π/ω, (12)
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Figure 4. Visualization of a sperm motion in bulk fluid. In thebeating tail the length of the blue rod is changed
to impose a sinusoidal bending wave. At the tip a spherical head (red) is attached. In between we add a midpiece,
that, in this case, is bend by shortening the yellow rod by 6%.At large enough bending parameters the elastic
sperm twists on the axoneme, creating a strong bend. In this case, the twist is locatet approximatly at the kink
in the bottom left corner of the picture. Without walls this sperm swims in a helical motion, visualized as the
trajectory of the sperms head in gray spheres. Visualization using VMD16

and thus can be calculated from the data presented in Fig. 5.
The tangential velocityv is fairly independent of the bending parameter, with a velocity

aroundv ≈ 0.02Sl/τb, decreasing by about20% for strongly asymmetric sperm. Hereτb
is the beating period of the sperm.

The curvature follows a sigmoidal function, starting atc < 0.5/Sl for the symmetric
sperm, increasing rapidly atb ≈ 4% to curvatures around2/Sl. The trajectory looks
helical if the average curvature is larger then1/Sl, while curvatures smaller then1/Sl are
generally found if the trajectory is rather straight. Stronger curvature is found for sperm
with a significant bent in the tail. This bent is generated dynamically forb > 4%. In this
case, the thrust of the tail and the drag force of the head induce the twisting and bending of
the axoneme out of the beating plane. With careful observation this twist can also be seen
in Fig. 4.

This rapid change in the tail curvature also effects other swimming parameters, like the
rotation frequency. The rotation frequency at first increases with the bending parameter, but
as the sperm is deformed, rotation slows down. The elastic deformation of the tail increases
its asymmetry, so that the head bends even further out of the beating plane, thereby slowing
down the rotational motion.

6 Outlook

The natural extension of this work is to look at hydrodynamicinteractions of active objects.
The first such question is what happens in the presence of walls. It is known for quite some
time17 that sperm cells accumulate at the walls of an observation chamber. Preliminary
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Figure 5. Parameters of helical sperm trajectories as a function of bending parameterb. All quantities are mea-
sured in units of sperm lengthSl and beat periodτb. Curvature is given in units of1/Sl (left scale), rotation
frequency in units of2π/τb (right scale), and swimming velocity in units ofSl/τb (right scale)

simulation results show that hydrodynamic interactions are sufficent to cause an effective
attraction of sperm cells to walls.

The true strength of this simulation scheme is the possibility to simulate several inter-
acting active objects. Large arrays of biological cilia display metachronal waves. We have
simulated large arrays of cilia and have shown that hydrodynamics is sufficient to cause
a self-organized metachronal coupling. Furthermore we could show that this metachronal
wave enhances fluid transport and efficiency by almost an order of magnitude.
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