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Hydrodynamics of Active Mesoscopic Systems

Jens Elgeti and Gerhard Gompper

Institut fur Festkdrperforschung
Research Centre Jillich, 52425 Julich, Germany
E-mail: {j.elgeti, g.gompper@fz-juelich.de

The dynamics of active mesoscopic systems is studied byi-particle collision dynamics,
a mesoscale hydrodynamic simulation technique. Spermomaterves as a model system
par excellence. The sperm tail is modelled by a crane-likecgtre. It is shown that helical
trajectories are generated by a chiral structure of thensp@ithe connection between sperm
geometry and parameters of the trajectory is determined.

1 Introduction

Many eucaryotic cells and bacteria move and navigate dgiivéheir environment. Some
well-known examples are E.coli, which swims by a rotatindgjda¢ filament in search
for food, fibroblasts, which crawl to close a wound, and speetfs, which swim with a
beating flagellum to find the egg. The catalog of cell motioloigy, each form especially
suited for the given task of the cell.

Cell crawling, where cells adhere to surfaces and extenpdd@ to pull themselves
forward, is a slow process, with typical velocities aroudiitn /min. We are interested
here in the faster forms of mesoscopic swimming. Sperm eeishe model systems par
excellence, with swimming velocities around pf:/s. Swimming on mesoscopic length
scales of nano- to micro-meters, is a lot different than anrttacroscopic length scales
familiar to us. Hydrodynamics is in general described by the Navier Stekestion. The
Reynolds numbeRe = pul/n, wherep is the density and) the viscosity of the fluid,
andwu and! are characteristic length and velocity scales, deternmresnportance of the
non-linear inertia terms. In the low Reynolds number regiiseous forces dominate over
inertia, leading to the linear and time-reversible Stokesation. The consequences of a
low Reynolds number are quite surprising. For example, aureld drop can be deposited
in a high-viscosity fluid between two concentric cylindeiM/hen the inner cylinder is
turned several times to mix the fluids, and susequently tmesaimber of times in the op-
posite direction, the result isota homogeneous mixture — instead the drop is reforfed!
This effect renders time-reversible swimming mechanigmgoissible. A nice review of
swimming at low Reynolds numbean be found in Ref.

Sperm cellspropel themselves forward by a snake-like motion of thdly the flagel-
lum, towards the egg. The best-known example is clearly musperm, but almost all
higher species, from the sea urchin to the elephant, prosheen. These sperm all look
remarkably alike. The flagellum may have a different lenpttt,its underlying cytoscele-
tal structure is well preserved throughout animal live. Tmrection of sperm motion is
controlled by chemotaxis, and has been studied extensiRelgently, the biochemical sig-
naling cascade of chemotaxis of Sea Urchin spermatozoadsasunraveled Our work
is focused on théydrodynamieffects in these systems.
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Cilia are hair-like extensions from the cell that propel fluid by lsipvlike motion. Cilia
are even more abundant in nature than sperm. The Paramecaawvdred with thousands
of cilia to propel it through the fluid, the mammalian lung gu@ped with cilia to propel
mucus out of the system, and in the female reproductive tik@tmove the egg.

Typically cilia appear in large arrays, so that hydrodyraimieractions between mul-
tiple active compounds play an essential role. It has beepgsed, but not yet proven,
that hydrodynamic interactions lead to metachronal waaesglf organized pattern found
on ciliated surfaces. In a large array, cilia do not beat bymcously or randomly, butin a
well defined wave-like pattern.

Activity on mesoscopic length scalés what is uniting these systems. They consist of
intrinsically active, micrometer-sized filaments in fluigspension. Activity is notimposed
by outside fields, but generated within the objects theneselv

2 Mesoscale Hydrodynamics

Hydrodynamics plays an essential role in mesoscopic syst€early the systems are too
large (severalkm) to model the water explicitly. Furthermore the hydrodymeshnas only
to be resolved on the relevant length scales of the systeis.calis for a coarse-grained
description of the fluid.

Several mesoscale simulation techniques to describe ttietlynamics of complex
fluids have been proposed in recent years, such as Lattitteridnn, Dissipative Particle
Dynamics and Multi-Particle-Collision Dynamics. The lwasiea in all these approaches
is to employ a highly simplified dynamics on the microscalgt, to respect the relevant
conservation laws for mass, momentum and energy, such ydabdynamical behaviour
emerges naturally on larger length scales.

Multi-Particle Collision Dynamic§MPC) is one such technigfré. In MPC, the fluid
is represented bV point particles in continuous space. The particles travtd wontinu-
ous velocities, and interact with a coarse-grained muatiiple interaction. The dynamics
evolves in two steps. In thereaming stepthe particles move ballistically for a collision-
timeh,

7 (t + h) = 75 (t) + ht;(t). ()

In the collision step the particles are sorted into the cells of a cubic latticthwattice
constant: and their velocities, relative to the centre-of-mass vigjaxf all particles in the
cell, are rotated around a random axis by an angle

Ti(t + h) = Uem (t) + RV (t) — Vem (1)), 2

wherefR is a rotation matrix. The direction of rotation is chosenepandently for each box
at each time step, while the rotation angle is typically ¢ansand used as a parameter to
tune viscosity and Schmidt numb&r = 7/pD, the ratio of momentum to mass diffusivity
(D is the diffusion constant). It has been shown that largaesioii angles and small time
steps are best suited for simulating fluid-like behaviowoatReynolds numbers’.

To ensure Galilean invariance, the collision grid has totiftesd between subsequent
collision step%°.
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Figure 1. The axoneme is modelled as three polymer rodscoriaected by harmonic springs. Bond length

Iy =a/2,1c =1/v2.

Both, the collision step and the streaming step conserveentum and energy explic-
itly, so that hydrodynamic behaviour emerges automaticaillarge length scales. Due to
the particle-based description of the fluid, coupling toeottmbedded mesoscale objects
is straightforward. In particular Molecular Dynamics islirgiited to simulate immersed
objects like polymers or vesicles.

One big advantage of this method is its computational eff@iedue to the simple
interactions between the particles. Furthermore, theektngart of the iterations are inde-
pendent of each other and the interactions are local, thusirgathe algorithm to scale
very well on parallel machines.

This method is by now widely in use, for example in studies ofiymers and star-
polymers under shear fld¥and vesicles or red blood cells in flét*2

3 Sperm Model

Sperm cells consist of three parts. The head, containinguticeeus where the genetic
information is stored, the beating tail that propels therspthrough the fluid and the
midpiece in between. Of course more structures and sultstesccan be identified, but
these are not important for their hydrodynamic properties.

The beating tail, i.e. the axoneme, can be well described astive elastic rod. We
model the axoneme with a crane-like structure (see Fig 1yedkemi-flexible rods are
interconnected by springs to obtain a three-dimensiomatire with well-suited elas-
tic properties. The three-fold structure allows to impoeerdernal-active and directed
bending by changing the rest lengths of the individual botidss imposing a spontaneous
directed curvature onto the structure.

The final tail structure contains 100 monomeres per rod, wvhie thusS; = 50a
long. A spherical head is attached in front. For propulsempropagating sine-wave is
imposed on the tail behind a shot@) passive midpiece. In experiments, helical motion
of sperm in a bulk fluid is observed, requesting some form afadity of the sperm due
to symmetry reasons. To impose this chirality, the midpieae be bent by a predefined
bending parametér, see Fig. 4. The bending parambemeasures how much one rod of
the midpiece is shortened, relative to its straight lendgthb = 9% the midpiece forms
approximately a quarter circle. Since this bent is imposed different rod than the beat
pattern, it bends the head out of the beating plane, creatimglity.

Coupling to hydrodynamics is done by immersing the striectara MPC fluid and
including monomers in the collision step, as suggested in*Réor polymers. To suffi-
ciently resolve the hydrodynamics in MPC, the beat ampétafithe tail has to exceed a
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few MPC collision boxes. This requires a large sperm stmectd lengthS; = 50 a, and
correspondingly large simulation boxes. For bulk simolasi we simulat&0? collision
boxes with periodic boundary conditions. Because each boxamns 10 fluid particles,
this corresponds to 3.5 million particles, and conseqyatgmands large computational
resources.

4 Hydrodynamics of Thin Rods

The tail of a sea urchin spem celli8um long, and less tha®.5.m in diameter. The hy-
drodynamics of the tail should therefore be well described bequence of thin rods. Thin
rods have an anisotropic friction with the solvent, wheeeftiction force perpendicular to
the rod,F is larger then parallel).

Intuitively it is obvious that dragging a rod perpendicularits orientation is more
difficult than parallel, and the physical origin of this beglwar is easy to understand. If
moved parallel to its orientation, most of the rod can tramehe wake of the tip, thus
reducing friction.

We define rod-drag coefficients for Stokes flow by

Fy = (3)
Fi=~iv1 (4)
with the subscript| for vector components parallel to the rod, andor perpendicular
components. These friction coefficients are related to iffiesibn coefficientsD) , via
kT
Nl =F— 5)
Dy,1

Calculating the diffusion coefficients for a rod-like catlaf finite length is not trivial, but
approximations can be found in the literature. Tirado, Maz and Garcia de la Tod®e
reviewed some theoretical approaches. The differentitbeagree on

27T77L7‘DH

o T = hl(LT/dr) + V| (6)
% =1In(L,/d,) +v1. (7)
B

whereL, is the length, and,. the diameter of the rod. Differences between theories are
found concerning the correction functions, . One approximation fo2 < L,./d, < 30
is

vy = 0.839 4 0.185d, /L, + 0.233 (d,./L,)* (8)
v = —0.207 + 0.980d,./L, — 0.133 (d,/L,)* (9)

These results can be used to calculate the swimming velo€igperm. Gray and
Hancock® used this approach to calculate the swimming velocity ofrspeells. After
assuming a sine-shaped beat-pattern,= 2v;, and some other approximations, they
obtained the swimming speed

—1
wh? 472h? 2m2b2 Cy
e = I Ry O 10
T <+ e T g, (10)
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wherew is the angular frequency, the wavelength and the amplitude of the beat. The
number of waves present on the tail is denoted by/;; is the drag coefficient of the head.
For a spherical head of radidg, and a thin tail of radiug, it is possible to approximate

Ch d 1
V_H = 3Ry, Klog ﬁ) + 5} . (12)

Because a pre-defined beat shape has been used, the viscdsiés not influence the
swimming speed.

Like the swimming velocity of sperm, other mesoscopic systef slender bodies can
be described in this fashion. Always, either the assumptior= 2 or the ratioy, /v
play an essential role. Sperm, for example, would not move it= +;. This shows the
importance and effects of the anisotropic friction of thids. To compare our results to
slender body theory, and as a suitability test of our model performed simulations to
calculatey, and- in an MPC fluid.

For this purpose we keep the structure, presented above apehms tail, in the centre
of a simulation box and expose it to a constant flow. The Bittoefficients are deter-
mined by averaging the forces on the structure. A uniform field imposed sufficiently
far from the rod by assigning Gaussian-distributed velesjtwith an average af in the
flow direction, to the solvent particles in a layer of thickrie perpendicular to the flow
direction.

The drag force is found to be linear withat least up ta ~ 0.3y/m/k,T. We chose
v = 0.1y/m/k,T, well within the linear regime for the remaining simulatsn

Fig. 2 shows as an example the friction coefficieptandy, as a function of scaled
inverse linear system sizé/.S). To determine the friction coefficients at infinite dilutio

950
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> 700
650
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500
450

0O 01 02 03 04 05
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Figure 2. Friction coefficients) and~, as a function of scaled inverse linear system diz¢S. System size
S3 varies betweerf20 a)? and (100 a)3. Rod length isl0a. MPC parameters are = 130°,p = 10,h =

0.05y/ma? /kpT.

we fitted a linear function to the data (see Fig. 2), and usectgtrapolation to infinite
system size. The strong finite-size effects demand largemgsand limit the range of
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accessible rod lengths. The largest simulated systemsauseor rods with a length of
20 a with 1103 boxes, or 13 million particles.

Considering the strong finite-size effects, and that thgmel rods are weakly pene-
trable for the fluid, the agreement with theory is surprisirgpod (see Fig. 3). The fitin
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Figure 3. Friction coefficientsy and~, as a function of rod lengtii... The solid line is a fit of the theory
(Egs.(6) and (7)) to the data of; , resulting ind, ~ 0.9 a. This value was then also used to pigt Points are
results of finite-size fits, as described in the text.

Fig. 3 resulted in a rod diameter df ~ 0.9 a, which is quite reasonable. Furthermore,
we see from Fig. 3 that at these low aspect ratiogy; < 2. Note that also for sea urchin

sperm tails,L,./d,. ~ 100. The effective aspect ratio is considerably smaller duééo t

wave length\ < L,..

5 Sperm Dynamics

We present here our results for bulk motion of sperm cellst @m is to investigate the
effect of midpiece curvature and sperm chirality on the bultion. In bulk fluid we
observe helical as well as almost straight trajectoriggedding on the degree of chirality.
Weakly bent sperm swim on a narrow helix. The tail is alwayselto the trajectory, just
the head performs some sideways motions. Strongly bentsperm in a larger helix
with the head near the centre of the helix and the tail pajntimtward (see Fig. 4).

Besides its position and orientation in space, a helix hasildependent parameters;
typically these are the pitch and the radiug. Additionally the sperm cells move with a
velocityv on these helical trajectories. Some of these parametensaeeprone to thermal
fluctuations then others. We found that the curvatyrine tangential velocity and the
rotation frequencyw are the most reliable observables (see Fig. 5). Other paeasne
for example the helix radius, the velocity along the centreline and the pitchp are
connected to the tangential velocityangular frequency and curvature via

cv?
r= v, = V0?2 — 2ot P =027/ w, (12)

w2
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Figure 4. Visualization of a sperm motion in bulk fluid. In theating tail the length of the blue rod is changed

to impose a sinusoidal bending wave. At the tip a sphericadl ffeed) is attached. In between we add a midpiece,
that, in this case, is bend by shortening the yellow rod by &%large enough bending parameters the elastic
sperm twists on the axoneme, creating a strong bend. In ks, the twist is locatet approximatly at the kink

in the bottom left corner of the picture. Without walls thjzesm swims in a helical motion, visualized as the

trajectory of the sperms head in gray spheres. Visualizatging VMD®

and thus can be calculated from the data presented in Fig. 5.

The tangential velocity is fairly independent of the bending parameter, with a vigfoc
aroundv =~ 0.02 S; /7, decreasing by abo@t% for strongly asymmetric sperm. Herg
is the beating period of the sperm.

The curvature follows a sigmoidal function, starting-at. 0.5/.5; for the symmetric
sperm, increasing rapidly &t ~ 4% to curvatures around/S;. The trajectory looks
helical if the average curvature is larger thett;, while curvatures smaller thely S; are
generally found if the trajectory is rather straight. Sggencurvature is found for sperm
with a significant bent in the tail. This bent is generatedaiyitally forb > 4%. In this
case, the thrust of the tail and the drag force of the headmthe twisting and bending of
the axoneme out of the beating plane. With careful obsemdtiis twist can also be seen
in Fig. 4.

This rapid change in the tail curvature also effects othé@msaing parameters, like the
rotation frequency. The rotation frequency at first incesasith the bending parameter, but
as the sperm is deformed, rotation slows down. The elasficm@tion of the tail increases
its asymmetry, so that the head bends even further out ofthtriy plane, thereby slowing
down the rotational motion.

6 Outlook
The natural extension of this work is to look at hydrodynaimtieractions of active objects.

The first such question is what happens in the presence &f. W&k known for quite some
timel” that sperm cells accumulate at the walls of an observatiambler. Preliminary

59



3 T | T T T T 0.06
rotation frequency  +
25 | velocity -~~~ 1 0,05
curvature e
2 0.04
1.5 0.03
1] 0.02
0.5 | 0.01
0 | | | | | | | 0

O 1 2 3 4 5 6 7 8
bending parameter b [%)]

Figure 5. Parameters of helical sperm trajectories as difumof bending parametér. All quantities are mea-
sured in units of sperm length; and beat period;. Curvature is given in units of /.S; (left scale), rotation
frequency in units o7 /7, (right scale), and swimming velocity in units 8§ /7, (right scale)

simulation results show that hydrodynamic interactiorssafficent to cause an effective
attraction of sperm cells to walls.

The true strength of this simulation scheme is the possitidi simulate several inter-
acting active objects. Large arrays of biological ciliapliiy metachronal waves. We have
simulated large arrays of cilia and have shown that hydradyios is sufficient to cause
a self-organized metachronal coupling. Furthermore wédcshow that this metachronal
wave enhances fluid transport and efficiency by almost arr ofdeagnitude.
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