000061710 001__ 61710
000061710 005__ 20240610120700.0
000061710 0247_ $$2pmid$$apmid:18398568
000061710 0247_ $$2DOI$$a10.1140/epje/i2007-10299-7
000061710 0247_ $$2WOS$$aWOS:000254906800007
000061710 037__ $$aPreJuSER-61710
000061710 041__ $$aeng
000061710 082__ $$a530
000061710 084__ $$2WoS$$aChemistry, Physical
000061710 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000061710 084__ $$2WoS$$aPhysics, Applied
000061710 084__ $$2WoS$$aPolymer Science
000061710 1001_ $$0P:(DE-HGF)0$$aFinken, R.$$b0
000061710 245__ $$aTwo-dimensional fluctuating vesicles in linear shear flow
000061710 260__ $$aBerlin$$bSpringer$$c2008
000061710 300__ $$a309 - 321
000061710 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061710 3367_ $$2DataCite$$aOutput Types/Journal article
000061710 3367_ $$00$$2EndNote$$aJournal Article
000061710 3367_ $$2BibTeX$$aARTICLE
000061710 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061710 3367_ $$2DRIVER$$aarticle
000061710 440_0 $$01985$$aEuropean Physical Journal E$$v25$$x1292-8941
000061710 500__ $$aRecord converted from VDB: 12.11.2012
000061710 520__ $$aThe stochastic motion of a two-dimensional vesicle in linear shear flow is studied at finite temperature. In the limit of small deformations from a circle, Langevin-type equations of motion are derived, which are highly nonlinear due to the constraint of constant perimeter length. These equations are solved in the low-temperature limit and using a mean-field approach, in which the length constraint is satisfied only on average. The constraint imposes non-trivial correlations between the lowest deformation modes at low temperature. We also simulate a vesicle in a hydrodynamic solvent by using the multi-particle collision dynamics technique, both in the quasi-circular regime and for larger deformations, and compare the stationary deformation correlation functions and the time autocorrelation functions with theoretical predictions. Good agreement between theory and simulations is obtained.
000061710 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000061710 588__ $$aDataset connected to Web of Science, Pubmed
000061710 650_7 $$2WoSType$$aJ
000061710 7001_ $$0P:(DE-HGF)0$$aLamura, A.$$b1
000061710 7001_ $$0P:(DE-HGF)0$$aSeifert, U.$$b2
000061710 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b3$$uFZJ
000061710 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/i2007-10299-7$$gVol. 25, p. 309 - 321$$p309 - 321$$q25<309 - 321$$tThe @European physical journal / E$$v25$$x1292-8941$$y2008
000061710 8567_ $$uhttp://dx.doi.org/10.1140/epje/i2007-10299-7
000061710 909CO $$ooai:juser.fz-juelich.de:61710$$pVDB
000061710 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000061710 9141_ $$y2008
000061710 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061710 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000061710 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000061710 970__ $$aVDB:(DE-Juel1)97162
000061710 980__ $$aVDB
000061710 980__ $$aConvertedRecord
000061710 980__ $$ajournal
000061710 980__ $$aI:(DE-Juel1)ICS-2-20110106
000061710 980__ $$aI:(DE-Juel1)VDB1045
000061710 980__ $$aUNRESTRICTED
000061710 981__ $$aI:(DE-Juel1)IBI-5-20200312
000061710 981__ $$aI:(DE-Juel1)IAS-2-20090406
000061710 981__ $$aI:(DE-Juel1)ICS-2-20110106
000061710 981__ $$aI:(DE-Juel1)VDB1045