000061724 001__ 61724
000061724 005__ 20210811190514.0
000061724 0247_ $$2DOI$$a10.1111/j.1365-2389.2007.00989.x
000061724 0247_ $$2WOS$$aWOS:000252320700009
000061724 037__ $$aPreJuSER-61724
000061724 041__ $$aENG
000061724 082__ $$a630
000061724 084__ $$2WoS$$aSoil Science
000061724 1001_ $$0P:(DE-Juel1)VDB4019$$aBurkhardt, M.$$b0$$uFZJ
000061724 245__ $$aField study on colloid transport using fluorescent microspheres
000061724 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2008
000061724 300__ $$a82 - 93
000061724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061724 3367_ $$2DataCite$$aOutput Types/Journal article
000061724 3367_ $$00$$2EndNote$$aJournal Article
000061724 3367_ $$2BibTeX$$aARTICLE
000061724 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061724 3367_ $$2DRIVER$$aarticle
000061724 440_0 $$01973$$aEuropean Journal of Soil Science$$v59$$x1351-0754
000061724 500__ $$aRecord converted from VDB: 12.11.2012
000061724 520__ $$aUnderstanding colloid movement through the vadose zone is important, because colloids may facilitate transport of some less mobile contaminants. Experimental evidence of colloid transport in the vadose zone, especially at the field scale, is rare. We developed and tested a method to detect and quantify local concentrations of fluorescent microspheres (MS) with a diameter of 1 μm in unsaturated soil based on fluorescent microscopy. The detection limit was 400 × 106 MS kg−1 field-moist soil for an automated counting method, and 20 × 103 MS kg−1 for manual counting. To test the method in the field, we applied a 40-mm pulse with an input concentration of 14.6 × 109 MS litre−1 on two plots during 6 hours, together with bromide (Br−) and the food dye Brilliant Blue (BB). The concentrations of MS were determined on horizontal cross-sections by a randomly distributed sampling scheme, either directly after application or 90 days after application and a rainfall of 100 mm. Mass recoveries for the MS of 85 and 65% were acceptable in view of the field conditions. Even after infiltration of particle-free water, the largest MS concentrations were measured at the soil’s surface, which pointed at physical retention mechanisms. An additional selective sampling of hydrologically active preferential flow pathways, guided by the dye infiltration patterns, revealed that the MS were transported to similar depths as BB, that is 0.80 m directly after irrigation and 1.7 m after 90 days. This implies that also a small fraction of the particulate tracers was rapidly transported to larger depths, regardless of their physico-chemical properties.
000061724 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000061724 588__ $$aDataset connected to Web of Science, Pubmed
000061724 7001_ $$0P:(DE-Juel1)VDB724$$aKasteel, R.$$b1$$uFZJ
000061724 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b2$$uFZJ
000061724 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000061724 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/j.1365-2389.2007.00989.x$$gVol. 59, p. 82 - 93$$p82 - 93$$q59<82 - 93$$tEuropean journal of soil science$$v59$$x1351-0754$$y2008
000061724 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-2389.2007.00989.x
000061724 909CO $$ooai:juser.fz-juelich.de:61724$$pVDB
000061724 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061724 9141_ $$y2008
000061724 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000061724 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000061724 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000061724 970__ $$aVDB:(DE-Juel1)97202
000061724 980__ $$aVDB
000061724 980__ $$aConvertedRecord
000061724 980__ $$ajournal
000061724 980__ $$aI:(DE-Juel1)IBG-3-20101118
000061724 980__ $$aI:(DE-82)080011_20140620
000061724 980__ $$aUNRESTRICTED
000061724 981__ $$aI:(DE-Juel1)IBG-3-20101118
000061724 981__ $$aI:(DE-Juel1)VDB1047