000061756 001__ 61756
000061756 005__ 20240610121253.0
000061756 0247_ $$2pmid$$apmid:18412477
000061756 0247_ $$2DOI$$a10.1063/1.2850082
000061756 0247_ $$2WOS$$aWOS:000255470300061
000061756 0247_ $$2Handle$$a2128/19029
000061756 037__ $$aPreJuSER-61756
000061756 041__ $$aeng
000061756 082__ $$a540
000061756 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000061756 1001_ $$0P:(DE-Juel1)VDB69599$$aTao, Y.-G.$$b0$$uFZJ
000061756 245__ $$aMultiparticle collision dynamics modeling of viscoelastic fluids
000061756 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2008
000061756 300__ $$a144902-1 - 144902-12
000061756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061756 3367_ $$2DataCite$$aOutput Types/Journal article
000061756 3367_ $$00$$2EndNote$$aJournal Article
000061756 3367_ $$2BibTeX$$aARTICLE
000061756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061756 3367_ $$2DRIVER$$aarticle
000061756 440_0 $$03145$$aJournal of Chemical Physics$$v128$$x0021-9606
000061756 500__ $$aRecord converted from VDB: 12.11.2012
000061756 520__ $$aIn order to investigate the rheological properties of viscoelastic fluids by mesoscopic hydrodynamics methods, we develop a multiparticle collision (MPC) dynamics model for a fluid of harmonic dumbbells. The algorithm consists of alternating streaming and collision steps. The advantage of the harmonic interactions is that the integration of the equations of motion in the streaming step can be performed analytically. Therefore, the algorithm is computationally as efficient as the original MPC algorithm for Newtonian fluids. The collision step is the same as in the original MPC method. All particles are confined between two solid walls moving oppositely, so that both steady and oscillatory shear flows can be investigated. Attractive wall potentials are applied to obtain a nearly uniform density everywhere in the simulation box. We find that both in steady and oscillatory shear flows, a boundary layer develops near the wall, with a higher velocity gradient than in the bulk. The thickness of this layer is proportional to the average dumbbell size. We determine the zero-shear viscosities as a function of the spring constant of the dumbbells and the mean free path. For very high shear rates, a very weak "shear thickening" behavior is observed. Moreover, storage and loss moduli are calculated in oscillatory shear, which show that the viscoelastic properties at low and moderate frequencies are consistent with a Maxwell fluid behavior. We compare our results with a kinetic theory of dumbbells in solution, and generally find good agreement.
000061756 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000061756 588__ $$aDataset connected to Web of Science, Pubmed
000061756 650_2 $$2MeSH$$aColloids: chemistry
000061756 650_2 $$2MeSH$$aComputer Simulation
000061756 650_2 $$2MeSH$$aElasticity
000061756 650_2 $$2MeSH$$aMicrofluidics: methods
000061756 650_2 $$2MeSH$$aModels, Chemical
000061756 650_2 $$2MeSH$$aModels, Molecular
000061756 650_2 $$2MeSH$$aMolecular Conformation
000061756 650_2 $$2MeSH$$aShear Strength
000061756 650_2 $$2MeSH$$aViscosity
000061756 650_7 $$00$$2NLM Chemicals$$aColloids
000061756 650_7 $$2WoSType$$aJ
000061756 7001_ $$0P:(DE-Juel1)VDB69655$$aGötze, I.O.$$b1$$uFZJ
000061756 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000061756 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.2850082$$gVol. 128, p. 144902-1 - 144902-12$$p144902-1 - 144902-12$$q128<144902-1 - 144902-12$$tThe @journal of chemical physics$$v128$$x0021-9606$$y2008
000061756 8567_ $$uhttp://dx.doi.org/10.1063/1.2850082
000061756 8564_ $$uhttps://juser.fz-juelich.de/record/61756/files/1.2850082-1.pdf$$yOpenAccess
000061756 8564_ $$uhttps://juser.fz-juelich.de/record/61756/files/1.2850082-1.gif?subformat=icon$$xicon$$yOpenAccess
000061756 8564_ $$uhttps://juser.fz-juelich.de/record/61756/files/1.2850082-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000061756 8564_ $$uhttps://juser.fz-juelich.de/record/61756/files/1.2850082-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000061756 8564_ $$uhttps://juser.fz-juelich.de/record/61756/files/1.2850082-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000061756 909CO $$ooai:juser.fz-juelich.de:61756$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000061756 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000061756 9141_ $$y2008
000061756 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000061756 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061756 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000061756 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000061756 970__ $$aVDB:(DE-Juel1)97234
000061756 9801_ $$aFullTexts
000061756 980__ $$aVDB
000061756 980__ $$aConvertedRecord
000061756 980__ $$ajournal
000061756 980__ $$aI:(DE-Juel1)ICS-2-20110106
000061756 980__ $$aI:(DE-Juel1)VDB1045
000061756 980__ $$aUNRESTRICTED
000061756 981__ $$aI:(DE-Juel1)IBI-5-20200312
000061756 981__ $$aI:(DE-Juel1)IAS-2-20090406
000061756 981__ $$aI:(DE-Juel1)ICS-2-20110106
000061756 981__ $$aI:(DE-Juel1)VDB1045