000061799 001__ 61799
000061799 005__ 20180211165317.0
000061799 0247_ $$2DOI$$a10.1002/pssr.200802054
000061799 0247_ $$2WOS$$aWOS:000257043400030
000061799 037__ $$aPreJuSER-61799
000061799 041__ $$aeng
000061799 082__ $$a530
000061799 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000061799 084__ $$2WoS$$aPhysics, Applied
000061799 084__ $$2WoS$$aPhysics, Condensed Matter
000061799 1001_ $$0P:(DE-Juel1)VDB61376$$aSchindler, C.$$b0$$uFZJ
000061799 245__ $$aControlled local filament growth and dissolution in Ag-Ge-Se
000061799 260__ $$aWeinheim$$bWiley-VCH$$c2008
000061799 300__ $$a129 - 131
000061799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061799 3367_ $$2DataCite$$aOutput Types/Journal article
000061799 3367_ $$00$$2EndNote$$aJournal Article
000061799 3367_ $$2BibTeX$$aARTICLE
000061799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061799 3367_ $$2DRIVER$$aarticle
000061799 440_0 $$016681$$aPhysica Status Solidi - Rapid Research Letters$$v2$$x1862-6254$$y3
000061799 500__ $$aRecord converted from VDB: 12.11.2012
000061799 520__ $$aMemory cells based on the cation migration and filament formation and rupture in a solid electrolyte have attracted much interest due to low switching voltages and a prospective high scalability. In this study we indirectly visualized the growth and dissolution of the conductive filament in Ag-Ge-Se samples with Ag bottom electrodes by surface analysis with Conductive Atomic Force Microscopy (CAFM). By application of a negative voltage to the inert CAFM tip, conductive filaments were grown on the scanned area and they were dissolved under reversed bias. The local conductivity changes directly corresponded to changes in the topography, i.e. to the filament protrusion and dissolution. Topography changes could be circumvented by limiting the maximum current. By placing the CAFM tip on a random spot on the sample, filaments with a diameter as low as 20 nm were grown by local current-voltage measurements. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
000061799 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000061799 588__ $$aDataset connected to Web of Science
000061799 650_7 $$2WoSType$$aJ
000061799 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b1$$uFZJ
000061799 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, S.$$b2$$uFZJ
000061799 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000061799 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.200802054$$gVol. 2, p. 129 - 131$$p129 - 131$$q2<129 - 131$$tPhysica status solidi / Rapid research letters$$v2$$x1862-6254$$y2008
000061799 8567_ $$uhttp://dx.doi.org/10.1002/pssr.200802054
000061799 909CO $$ooai:juser.fz-juelich.de:61799$$pVDB
000061799 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000061799 9141_ $$y2008
000061799 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061799 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000061799 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000061799 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000061799 970__ $$aVDB:(DE-Juel1)97341
000061799 980__ $$aVDB
000061799 980__ $$aConvertedRecord
000061799 980__ $$ajournal
000061799 980__ $$aI:(DE-Juel1)PGI-7-20110106
000061799 980__ $$aI:(DE-82)080009_20140620
000061799 980__ $$aUNRESTRICTED
000061799 981__ $$aI:(DE-Juel1)PGI-7-20110106
000061799 981__ $$aI:(DE-Juel1)VDB881