000006183 001__ 6183
000006183 005__ 20240610115727.0
000006183 0247_ $$2DOI$$a10.1016/j.jcp.2009.09.024
000006183 0247_ $$2WOS$$aWOS:000272262300008
000006183 037__ $$aPreJuSER-6183
000006183 041__ $$aeng
000006183 082__ $$a530
000006183 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000006183 084__ $$2WoS$$aPhysics, Mathematical
000006183 1001_ $$0P:(DE-Juel1)VDB77476$$aHuang, C.C.$$b0$$uFZJ
000006183 245__ $$aCell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations
000006183 260__ $$aOrlando, Fla.$$bAcademic Press$$c2010
000006183 300__ $$a168 - 177
000006183 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006183 3367_ $$2DataCite$$aOutput Types/Journal article
000006183 3367_ $$00$$2EndNote$$aJournal Article
000006183 3367_ $$2BibTeX$$aARTICLE
000006183 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006183 3367_ $$2DRIVER$$aarticle
000006183 440_0 $$09301$$aJournal of Computational Physics$$v229$$x0021-9991$$y1
000006183 500__ $$aRecord converted from VDB: 12.11.2012
000006183 520__ $$aA local Maxwellian thermostat for the multiparticle collision dynamics algorithm is proposed. The algorithm is based on a scaling of the relative velocities of the fluid particles within a collision cell. The scaling factor is determined from the distribution of the kinetic energy within such a cell. Thereby the algorithm ensures that the distribution of the relative velocities is given by the Maxwell-Boltzmann distribution. The algorithm is particularly useful for non-equilibrium systems, where temperature has to be controlled locally. We perform various non-equilibrium simulations for fluids in shear and pressure-driven flow, which confirm the validity of the proposed simulation scheme. In addition, we determine the dynamic structure factors for fluids with and without thermostat, which exhibit significant differences due to suppression of the diffusive part of the energy transport of the isothermal system. (C) 2009 Elsevier Inc. All rights reserved.
000006183 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000006183 536__ $$0G:(DE-Juel1)FUEK505$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)$$cFUEK505$$x1
000006183 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x2
000006183 588__ $$aDataset connected to Web of Science
000006183 650_7 $$2WoSType$$aJ
000006183 65320 $$2Author$$aIsothermal simulations
000006183 65320 $$2Author$$aCanonical ensemble
000006183 65320 $$2Author$$aVelocity scaling
000006183 65320 $$2Author$$aMesoscale hydrodynamics simulations
000006183 65320 $$2Author$$aMultiparticle collision dynamics
000006183 65320 $$2Author$$aNon-equilibrium simulations
000006183 65320 $$2Author$$aThermalization
000006183 65320 $$2Author$$aStochastic process
000006183 7001_ $$0P:(DE-Juel1)VDB69549$$aChatterji, A.$$b1$$uFZJ
000006183 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b2$$uFZJ
000006183 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b3$$uFZJ
000006183 7001_ $$0P:(DE-Juel1)131039$$aWinkler, R. G.$$b4$$uFZJ
000006183 773__ $$0PERI:(DE-600)1469164-4$$a10.1016/j.jcp.2009.09.024$$gVol. 229, p. 168 - 177$$p168 - 177$$q229<168 - 177$$tJournal of computational physics$$v229$$x0021-9991$$y2010
000006183 8567_ $$uhttp://dx.doi.org/10.1016/j.jcp.2009.09.024
000006183 909CO $$ooai:juser.fz-juelich.de:6183$$pVDB
000006183 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000006183 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x1
000006183 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x2
000006183 9141_ $$y2010
000006183 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000006183 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000006183 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x1
000006183 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x2$$zIFF-2
000006183 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x3
000006183 970__ $$aVDB:(DE-Juel1)114327
000006183 980__ $$aVDB
000006183 980__ $$aConvertedRecord
000006183 980__ $$ajournal
000006183 980__ $$aI:(DE-Juel1)ICS-2-20110106
000006183 980__ $$aI:(DE-Juel1)JSC-20090406
000006183 980__ $$aI:(DE-Juel1)IAS-2-20090406
000006183 980__ $$aI:(DE-82)080012_20140620
000006183 980__ $$aUNRESTRICTED
000006183 981__ $$aI:(DE-Juel1)IBI-5-20200312
000006183 981__ $$aI:(DE-Juel1)IAS-2-20090406
000006183 981__ $$aI:(DE-Juel1)ICS-2-20110106
000006183 981__ $$aI:(DE-Juel1)JSC-20090406
000006183 981__ $$aI:(DE-Juel1)IAS-2-20090406
000006183 981__ $$aI:(DE-Juel1)VDB1346