| Home > Publications database > Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations > print |
| 001 | 6183 | ||
| 005 | 20240610115727.0 | ||
| 024 | 7 | _ | |2 DOI |a 10.1016/j.jcp.2009.09.024 |
| 024 | 7 | _ | |2 WOS |a WOS:000272262300008 |
| 037 | _ | _ | |a PreJuSER-6183 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 530 |
| 084 | _ | _ | |2 WoS |a Computer Science, Interdisciplinary Applications |
| 084 | _ | _ | |2 WoS |a Physics, Mathematical |
| 100 | 1 | _ | |a Huang, C.C. |b 0 |u FZJ |0 P:(DE-Juel1)VDB77476 |
| 245 | _ | _ | |a Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations |
| 260 | _ | _ | |a Orlando, Fla. |b Academic Press |c 2010 |
| 300 | _ | _ | |a 168 - 177 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |a Journal of Computational Physics |x 0021-9991 |0 9301 |y 1 |v 229 |
| 500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
| 520 | _ | _ | |a A local Maxwellian thermostat for the multiparticle collision dynamics algorithm is proposed. The algorithm is based on a scaling of the relative velocities of the fluid particles within a collision cell. The scaling factor is determined from the distribution of the kinetic energy within such a cell. Thereby the algorithm ensures that the distribution of the relative velocities is given by the Maxwell-Boltzmann distribution. The algorithm is particularly useful for non-equilibrium systems, where temperature has to be controlled locally. We perform various non-equilibrium simulations for fluids in shear and pressure-driven flow, which confirm the validity of the proposed simulation scheme. In addition, we determine the dynamic structure factors for fluids with and without thermostat, which exhibit significant differences due to suppression of the diffusive part of the energy transport of the isothermal system. (C) 2009 Elsevier Inc. All rights reserved. |
| 536 | _ | _ | |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK411 |x 0 |c FUEK411 |a Scientific Computing (FUEK411) |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK505 |x 1 |c FUEK505 |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505) |
| 536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 2 |f POF II |
| 588 | _ | _ | |a Dataset connected to Web of Science |
| 650 | _ | 7 | |a J |2 WoSType |
| 653 | 2 | 0 | |2 Author |a Isothermal simulations |
| 653 | 2 | 0 | |2 Author |a Canonical ensemble |
| 653 | 2 | 0 | |2 Author |a Velocity scaling |
| 653 | 2 | 0 | |2 Author |a Mesoscale hydrodynamics simulations |
| 653 | 2 | 0 | |2 Author |a Multiparticle collision dynamics |
| 653 | 2 | 0 | |2 Author |a Non-equilibrium simulations |
| 653 | 2 | 0 | |2 Author |a Thermalization |
| 653 | 2 | 0 | |2 Author |a Stochastic process |
| 700 | 1 | _ | |a Chatterji, A. |b 1 |u FZJ |0 P:(DE-Juel1)VDB69549 |
| 700 | 1 | _ | |a Sutmann, G. |b 2 |u FZJ |0 P:(DE-Juel1)132274 |
| 700 | 1 | _ | |a Gompper, G. |b 3 |u FZJ |0 P:(DE-Juel1)130665 |
| 700 | 1 | _ | |a Winkler, R. G. |b 4 |u FZJ |0 P:(DE-Juel1)131039 |
| 773 | _ | _ | |a 10.1016/j.jcp.2009.09.024 |g Vol. 229, p. 168 - 177 |p 168 - 177 |q 229<168 - 177 |0 PERI:(DE-600)1469164-4 |t Journal of computational physics |v 229 |y 2010 |x 0021-9991 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1016/j.jcp.2009.09.024 |
| 909 | C | O | |o oai:juser.fz-juelich.de:6183 |p VDB |
| 913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
| 914 | 1 | _ | |y 2010 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
| 920 | 1 | _ | |d 31.12.2010 |g IFF |k IFF-2 |l Theorie der Weichen Materie und Biophysik |0 I:(DE-Juel1)VDB782 |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Centre |g JSC |x 1 |
| 920 | 1 | _ | |g IAS |k IAS-2 |l Theorie der Weichen Materie und Biophysik |0 I:(DE-Juel1)IAS-2-20090406 |x 2 |z IFF-2 |
| 920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l Jülich Aachen Research Alliance - High-Performance Computing |g JARA |x 3 |
| 970 | _ | _ | |a VDB:(DE-Juel1)114327 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
| 981 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)VDB1346 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|