001     61844
005     20180211170050.0
024 7 _ |2 pmid
|a pmid:21825762
024 7 _ |2 DOI
|a 10.1088/0957-4484/19/22/225602
024 7 _ |2 WOS
|a WOS:000255662500010
037 _ _ |a PreJuSER-61844
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Buscaglia, M.T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Ferroelectric hollow particles obtained by solid-state reaction
260 _ _ |a Bristol
|b IOP Publ.
|c 2008
300 _ _ |a 225602
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nanotechnology
|x 0957-4484
|0 4475
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Hollow particles of barium titanate were obtained by a two-step process combining colloidal chemistry and solid-state reaction. BaCO(3) crystals (size ≈1 µm) suspended in a peroxy-Ti(IV) aqueous solution were coated with an amorphous TiO(2) shell using a precipitation process. Calcination of the BaCO(3)@TiO(2) core-shell particles at 700 °C resulted in the formation of BaTiO(3) hollow particles (shell thickness of ≈70 nm) which retain the morphology of the BaCO(3) crystals. Formation of the cavity occurs because out-diffusion of the core phase is much faster than in-diffusion of the shell material. X-ray diffraction (XRD) and Raman spectroscopy indicate that the hollow particles possess a tetragonal ferroelectric structure with axial ratio c/a = 1.005. Piezoresponse force microscopy has shown strong piezoactivity and 180° ferroelectric domains. The process described provides a general route to fabricate hollow ferroelectric structures of several compounds.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Buscaglia, V.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Viviani, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Dondero, G.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Röhrig, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB60095
700 1 _ |a Rüdiger, A.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB26957
700 1 _ |a Nanni, P.
|b 6
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0957-4484/19/22/225602
|g Vol. 19, p. 225602
|p 225602
|q 19<225602
|0 PERI:(DE-600)1362365-5
|t Nanotechnology
|v 19
|y 2008
|x 0957-4484
856 7 _ |u http://dx.doi.org/10.1088/0957-4484/19/22/225602
909 C O |o oai:juser.fz-juelich.de:61844
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)97521
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21