000061869 001__ 61869
000061869 005__ 20180211180607.0
000061869 0247_ $$2DOI$$a10.1081/AL-12000671
000061869 0247_ $$2WOS$$aWOS:000177342300006
000061869 037__ $$aPreJuSER-61869
000061869 041__ $$aeng
000061869 082__ $$a540
000061869 084__ $$2WoS$$aChemistry, Analytical
000061869 1001_ $$0P:(DE-HGF)0$$aAlt, F.$$b0
000061869 245__ $$aBonding states of palladium in phytosystems : first results for endive
000061869 260__ $$aNew York, NY$$bTaylor & Francis$$c2002
000061869 300__ $$a1349 - 1359
000061869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061869 3367_ $$2DataCite$$aOutput Types/Journal article
000061869 3367_ $$00$$2EndNote$$aJournal Article
000061869 3367_ $$2BibTeX$$aARTICLE
000061869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061869 3367_ $$2DRIVER$$aarticle
000061869 440_0 $$07961$$aAnalytical Letters$$v35$$x0003-2719
000061869 500__ $$aRecord converted from VDB: 12.11.2012
000061869 520__ $$aThe binding of palladium to organic ligands was studied in leaves from contaminated endive. The palladium-treated plants contained 8.7 ng Pd/g referring to wet weight. After a cell breakdown in buffer the resulting homogenate was separated into supernatant and pellet by centrifugation and the distribution of palladium was determined. The liquid fraction contained 40% of the total palladium and was further separated by ultrafiltration. This technique revealed that 23% of total palladium was present as high molecular weight species (>10 kDa). After concentration, the high molecular weight fraction was further investigated by gel permeation chromatography (GPC). By this method only one elution range for palladium was observed. The size range of the GPC used was about 20-8000 kDa for globular proteins. The palladium elution maximum was detected in the range of about 160 kDa. The determinations of palladium were performed by total-reflection X-ray fluorescence after palladium separation and preconcentration.
000061869 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000061869 588__ $$aDataset connected to Web of Science
000061869 650_7 $$2WoSType$$aJ
000061869 65320 $$2Author$$apalladium
000061869 65320 $$2Author$$aendive
000061869 65320 $$2Author$$abonding states
000061869 7001_ $$0P:(DE-HGF)0$$aWeber, G.$$b1
000061869 7001_ $$0P:(DE-HGF)0$$aMesserschmidt, J.$$b2
000061869 7001_ $$0P:(DE-HGF)0$$avon Bohlen, A.$$b3
000061869 7001_ $$0P:(DE-Juel1)129343$$aKastenholz, B.$$b4$$uFZJ
000061869 7001_ $$0P:(DE-Juel1)129325$$aGünther, K.$$b5$$uFZJ
000061869 773__ $$0PERI:(DE-600)2098207-0$$a10.1081/AL-12000671$$gVol. 35, p. 1349 - 1359$$p1349 - 1359$$q35<1349 - 1359$$tAnalytical letters$$v35$$x0003-2719$$y2002
000061869 909CO $$ooai:juser.fz-juelich.de:61869$$pVDB
000061869 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000061869 9141_ $$y2002
000061869 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061869 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000061869 970__ $$aVDB:(DE-Juel1)9758
000061869 980__ $$aVDB
000061869 980__ $$aConvertedRecord
000061869 980__ $$ajournal
000061869 980__ $$aI:(DE-Juel1)IBG-2-20101118
000061869 980__ $$aUNRESTRICTED
000061869 981__ $$aI:(DE-Juel1)IBG-2-20101118
000061869 981__ $$aI:(DE-Juel1)ICG-3-20090406