000061902 001__ 61902
000061902 005__ 20240708132804.0
000061902 0247_ $$2DOI$$a10.1016/j.ssi.2008.02.010
000061902 0247_ $$2WOS$$aWOS:000256200100009
000061902 037__ $$aPreJuSER-61902
000061902 041__ $$aeng
000061902 082__ $$a530
000061902 084__ $$2WoS$$aChemistry, Physical
000061902 084__ $$2WoS$$aPhysics, Condensed Matter
000061902 1001_ $$0P:(DE-Juel1)VDB61604$$avan Gestel, T.$$b0$$uFZJ
000061902 245__ $$aDevelopment of thin-film nano-structured electrolyte layers for application in anode-supported solid oxide fuel cells
000061902 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2008
000061902 300__ $$a428 - 437
000061902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061902 3367_ $$2DataCite$$aOutput Types/Journal article
000061902 3367_ $$00$$2EndNote$$aJournal Article
000061902 3367_ $$2BibTeX$$aARTICLE
000061902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061902 3367_ $$2DRIVER$$aarticle
000061902 440_0 $$05565$$aSolid State Ionics$$v179$$x0167-2738
000061902 500__ $$aRecord converted from VDB: 12.11.2012
000061902 520__ $$aThis paper reports a study on the deposition of sol particles for the preparation of thin and ultra-thin electrolyte membrane layers (thickness < 5 mu m-50 nm), which cannot be produced with regular powder-based processes. For the deposition process, a range of coating liquids with varying particle sizes, covering the complete range between standard suspensions with a particle size of several 100 nm and nano-particle sols, was prepared. In the first part, it is demonstrated that a colloidal sol route can be used for membrane formation on a regular macroporous SOFC anode (NiO/zirconia), when the sol particle size is adapted to the pore structure of the anode (particle size similar to 200 nm). SEM characterization indicated a thickness in the range 3-4 mu m after calcination at 600 degrees C and ca. 2 mu m after sintering at 1400 degrees C, far below the limit for conventional powder-based deposition methods. In the second part, ultra-thin zirconia and ceria membrane films are prepared by spraying sols containing nanoparticles (average size 5-6 nm). The layers show a thickness of similar to 100 nm, a very narrow particle size distribution and tight ultra-microporous structure, which allows a sintering treatment below 1000 degrees C, and can be used as an additional electrolyte layer for improving the leak rate of the cell or as diffusion barrier. (c) 2008 Elsevier B.V. All rights reserved.
000061902 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000061902 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000061902 588__ $$aDataset connected to Web of Science
000061902 650_7 $$2WoSType$$aJ
000061902 65320 $$2Author$$aelectrolyte layer
000061902 65320 $$2Author$$asol coating
000061902 65320 $$2Author$$acolloidal sol
000061902 65320 $$2Author$$apolymeric sol
000061902 65320 $$2Author$$aSOFC development
000061902 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b1$$uFZJ
000061902 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b2$$uFZJ
000061902 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$uFZJ
000061902 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2008.02.010$$gVol. 179, p. 428 - 437$$p428 - 437$$q179<428 - 437$$tSolid state ionics$$v179$$x0167-2738$$y2008
000061902 8567_ $$uhttp://dx.doi.org/10.1016/j.ssi.2008.02.010
000061902 909CO $$ooai:juser.fz-juelich.de:61902$$pVDB
000061902 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000061902 9141_ $$y2008
000061902 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061902 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000061902 970__ $$aVDB:(DE-Juel1)97640
000061902 980__ $$aVDB
000061902 980__ $$aConvertedRecord
000061902 980__ $$ajournal
000061902 980__ $$aI:(DE-Juel1)IEK-1-20101013
000061902 980__ $$aUNRESTRICTED
000061902 981__ $$aI:(DE-Juel1)IMD-2-20101013
000061902 981__ $$aI:(DE-Juel1)IEK-1-20101013