001     61902
005     20240708132804.0
024 7 _ |2 DOI
|a 10.1016/j.ssi.2008.02.010
024 7 _ |2 WOS
|a WOS:000256200100009
037 _ _ |a PreJuSER-61902
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a van Gestel, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61604
245 _ _ |a Development of thin-film nano-structured electrolyte layers for application in anode-supported solid oxide fuel cells
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2008
300 _ _ |a 428 - 437
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Solid State Ionics
|x 0167-2738
|0 5565
|v 179
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a This paper reports a study on the deposition of sol particles for the preparation of thin and ultra-thin electrolyte membrane layers (thickness < 5 mu m-50 nm), which cannot be produced with regular powder-based processes. For the deposition process, a range of coating liquids with varying particle sizes, covering the complete range between standard suspensions with a particle size of several 100 nm and nano-particle sols, was prepared. In the first part, it is demonstrated that a colloidal sol route can be used for membrane formation on a regular macroporous SOFC anode (NiO/zirconia), when the sol particle size is adapted to the pore structure of the anode (particle size similar to 200 nm). SEM characterization indicated a thickness in the range 3-4 mu m after calcination at 600 degrees C and ca. 2 mu m after sintering at 1400 degrees C, far below the limit for conventional powder-based deposition methods. In the second part, ultra-thin zirconia and ceria membrane films are prepared by spraying sols containing nanoparticles (average size 5-6 nm). The layers show a thickness of similar to 100 nm, a very narrow particle size distribution and tight ultra-microporous structure, which allows a sintering treatment below 1000 degrees C, and can be used as an additional electrolyte layer for improving the leak rate of the cell or as diffusion barrier. (c) 2008 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a electrolyte layer
653 2 0 |2 Author
|a sol coating
653 2 0 |2 Author
|a colloidal sol
653 2 0 |2 Author
|a polymeric sol
653 2 0 |2 Author
|a SOFC development
700 1 _ |a Sebold, D.
|b 1
|u FZJ
|0 P:(DE-Juel1)129662
700 1 _ |a Meulenberg, W. A.
|b 2
|u FZJ
|0 P:(DE-Juel1)129637
700 1 _ |a Buchkremer, H. P.
|b 3
|u FZJ
|0 P:(DE-Juel1)129594
773 _ _ |a 10.1016/j.ssi.2008.02.010
|g Vol. 179, p. 428 - 437
|p 428 - 437
|q 179<428 - 437
|0 PERI:(DE-600)1500750-9
|t Solid state ionics
|v 179
|y 2008
|x 0167-2738
856 7 _ |u http://dx.doi.org/10.1016/j.ssi.2008.02.010
909 C O |o oai:juser.fz-juelich.de:61902
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
970 _ _ |a VDB:(DE-Juel1)97640
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21