000061940 001__ 61940
000061940 005__ 20211109141620.0
000061940 0247_ $$2DOI$$a10.1088/1367-2630/10/5/053012
000061940 0247_ $$2WOS$$aWOS:000255793900002
000061940 0247_ $$2altmetric$$aaltmetric:4357839
000061940 0247_ $$2Handle$$a2128/28959
000061940 037__ $$aPreJuSER-61940
000061940 041__ $$aeng
000061940 082__ $$a530
000061940 084__ $$2WoS$$aPhysics, Multidisciplinary
000061940 1001_ $$0P:(DE-Juel1)VDB73384$$aTemirov, R.$$b0$$uFZJ
000061940 245__ $$aA novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy
000061940 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2008
000061940 300__ $$a053012
000061940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000061940 3367_ $$2DataCite$$aOutput Types/Journal article
000061940 3367_ $$00$$2EndNote$$aJournal Article
000061940 3367_ $$2BibTeX$$aARTICLE
000061940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000061940 3367_ $$2DRIVER$$aarticle
000061940 440_0 $$08201$$aNew Journal of Physics$$v10$$x1367-2630
000061940 500__ $$aRecord converted from VDB: 12.11.2012
000061940 520__ $$aWe report a new contrast mechanism in which scanning tunnelling micrographs of a certain class of molecules resemble chemists' structure formulae. The method is based on adding molecular hydrogen below its condensation temperature to the tunnelling junction of a low-temperature scanning tunnelling microscope. In the presence of hydrogen, the scanning tunnelling microscope contrast can be switched between the conventional mapping of the electronic local density of states and the new geometric imaging by selecting the appropriate bias voltage. Scanning tunnelling spectroscopy suggests that the coupling of the electron tunnelling current to an internal degree of freedom in the tunnelling junction is responsible for the geometric contrast. The new scanning tunnelling hydrogen microscopy (STHM) allows the chemical identification of certain molecular species by their structure.
000061940 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000061940 588__ $$aDataset connected to Web of Science
000061940 650_7 $$2WoSType$$aJ
000061940 7001_ $$0P:(DE-Juel1)VDB73518$$aSoubatch, S.$$b1$$uFZJ
000061940 7001_ $$0P:(DE-Juel1)VDB73530$$aNeucheva, O.$$b2$$uFZJ
000061940 7001_ $$0P:(DE-HGF)0$$aLassise, A. C.$$b3
000061940 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b4$$uFZJ
000061940 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/10/5/053012$$gVol. 10, p. 053012$$p053012$$q10<053012$$tNew journal of physics$$v10$$x1367-2630$$y2008
000061940 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/10/5/053012
000061940 8564_ $$uhttps://juser.fz-juelich.de/record/61940/files/Temirov_2008_New_J._Phys._10_053012.pdf$$yOpenAccess
000061940 909CO $$ooai:juser.fz-juelich.de:61940$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000061940 9141_ $$y2008
000061940 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000061940 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000061940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
000061940 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000061940 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000061940 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000061940 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000061940 970__ $$aVDB:(DE-Juel1)97805
000061940 980__ $$aVDB
000061940 980__ $$aConvertedRecord
000061940 980__ $$ajournal
000061940 980__ $$aI:(DE-Juel1)PGI-3-20110106
000061940 980__ $$aI:(DE-Juel1)VDB381
000061940 980__ $$aI:(DE-82)080009_20140620
000061940 980__ $$aUNRESTRICTED
000061940 9801_ $$aFullTexts
000061940 981__ $$aI:(DE-Juel1)PGI-3-20110106
000061940 981__ $$aI:(DE-Juel1)VDB381
000061940 981__ $$aI:(DE-Juel1)VDB881