001     61940
005     20211109141620.0
024 7 _ |a 10.1088/1367-2630/10/5/053012
|2 DOI
024 7 _ |a WOS:000255793900002
|2 WOS
024 7 _ |a altmetric:4357839
|2 altmetric
024 7 _ |a 2128/28959
|2 Handle
037 _ _ |a PreJuSER-61940
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB73384
|a Temirov, R.
|b 0
|u FZJ
245 _ _ |a A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2008
300 _ _ |a 053012
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 8201
|a New Journal of Physics
|v 10
|x 1367-2630
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We report a new contrast mechanism in which scanning tunnelling micrographs of a certain class of molecules resemble chemists' structure formulae. The method is based on adding molecular hydrogen below its condensation temperature to the tunnelling junction of a low-temperature scanning tunnelling microscope. In the presence of hydrogen, the scanning tunnelling microscope contrast can be switched between the conventional mapping of the electronic local density of states and the new geometric imaging by selecting the appropriate bias voltage. Scanning tunnelling spectroscopy suggests that the coupling of the electron tunnelling current to an internal degree of freedom in the tunnelling junction is responsible for the geometric contrast. The new scanning tunnelling hydrogen microscopy (STHM) allows the chemical identification of certain molecular species by their structure.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB73518
|a Soubatch, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB73530
|a Neucheva, O.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Lassise, A. C.
|b 3
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1464444-7
|a 10.1088/1367-2630/10/5/053012
|g Vol. 10, p. 053012
|p 053012
|q 10<053012
|t New journal of physics
|v 10
|x 1367-2630
|y 2008
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/10/5/053012
856 4 _ |u https://juser.fz-juelich.de/record/61940/files/Temirov_2008_New_J._Phys._10_053012.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:61940
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2008
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)VDB801
|d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|x 0
920 1 _ |0 I:(DE-Juel1)VDB381
|d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 2
970 _ _ |a VDB:(DE-Juel1)97805
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21