000062080 001__ 62080 000062080 005__ 20180211174456.0 000062080 0247_ $$2pmid$$apmid:18272167 000062080 0247_ $$2DOI$$a10.1016/j.jcis.2007.12.031 000062080 0247_ $$2WOS$$aWOS:000254767200012 000062080 037__ $$aPreJuSER-62080 000062080 041__ $$aeng 000062080 082__ $$a540 000062080 084__ $$2WoS$$aChemistry, Physical 000062080 1001_ $$0P:(DE-HGF)0$$aLeroy, P.$$b0 000062080 245__ $$aComplex conductivity of water-saturated packs of glass beads 000062080 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2008 000062080 300__ $$a103 - 117 000062080 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000062080 3367_ $$2DataCite$$aOutput Types/Journal article 000062080 3367_ $$00$$2EndNote$$aJournal Article 000062080 3367_ $$2BibTeX$$aARTICLE 000062080 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000062080 3367_ $$2DRIVER$$aarticle 000062080 440_0 $$03193$$aJournal of Colloid and Interface Science$$v321$$x0021-9797$$y1 000062080 500__ $$aRecord converted from VDB: 12.11.2012 000062080 520__ $$aThe low-frequency conductivity response of water-saturated packs of glass beads reflects a combination of two processes. One process corresponds to the polarization of the mineral/water interface coating the surface of the grains. The other process corresponds to the Maxwell-Wagner polarization associated with accumulation of the electrical charges in the pore space of the composite medium. A model of low-frequency conductivity dispersion is proposed. This model is connected to a triple-layer model of electrochemical processes occurring at the surface of silica. This model accounts for the partition of the counterions between the Stern and the diffuse layers. The polarization of the mineral/water interface is modeled by the electrochemical polarization model of Schurr for a spherical grain. We take into account also the DC surface conductivity contribution of protons of the sorbed water and the contribution of the diffuse layer. At the scale of a macroscopic representative elementary volume of the porous material, the electrochemical polarization of a single grain is convoluted with the grain size distribution of the porous material. Finally, the Maxwell-Wagner polarization is modeled using the complex conductivity of a granular porous medium obtained from the differential effective medium theory. The predictions of this model agree well with experimental data of spectral induced polarization. Two peaks are observed at low frequencies in the spectrum of the phase. The first peak corresponds to the distribution of the size of the beads and the second peak is due to the roughness of the grains. 000062080 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000062080 588__ $$aDataset connected to Web of Science, Pubmed 000062080 650_7 $$2WoSType$$aJ 000062080 65320 $$2Author$$aspectral impedance 000062080 65320 $$2Author$$aporous media 000062080 65320 $$2Author$$ainduced polarization 000062080 65320 $$2Author$$acomplex conductivity 000062080 65320 $$2Author$$adouble layer 000062080 65320 $$2Author$$aparticle size distribution 000062080 7001_ $$0P:(DE-HGF)0$$aRevil, A.$$b1 000062080 7001_ $$0P:(DE-Juel1)VDB736$$aKemna, A.$$b2$$uFZJ 000062080 7001_ $$0P:(DE-HGF)0$$aCosenza, P.$$b3 000062080 7001_ $$0P:(DE-HGF)0$$aGhorbani, A.$$b4 000062080 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2007.12.031$$gVol. 321, p. 103 - 117$$p103 - 117$$q321<103 - 117$$tJournal of colloid and interface science$$v321$$x0021-9797$$y2008 000062080 8567_ $$uhttp://dx.doi.org/10.1016/j.jcis.2007.12.031 000062080 909CO $$ooai:juser.fz-juelich.de:62080$$pVDB 000062080 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000062080 9141_ $$y2008 000062080 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000062080 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1 000062080 970__ $$aVDB:(DE-Juel1)98075 000062080 980__ $$aVDB 000062080 980__ $$aConvertedRecord 000062080 980__ $$ajournal 000062080 980__ $$aI:(DE-Juel1)IBG-3-20101118 000062080 980__ $$aUNRESTRICTED 000062080 981__ $$aI:(DE-Juel1)IBG-3-20101118