001     62080
005     20180211174456.0
024 7 _ |2 pmid
|a pmid:18272167
024 7 _ |2 DOI
|a 10.1016/j.jcis.2007.12.031
024 7 _ |2 WOS
|a WOS:000254767200012
037 _ _ |a PreJuSER-62080
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |a Leroy, P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Complex conductivity of water-saturated packs of glass beads
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2008
300 _ _ |a 103 - 117
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Colloid and Interface Science
|x 0021-9797
|0 3193
|y 1
|v 321
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The low-frequency conductivity response of water-saturated packs of glass beads reflects a combination of two processes. One process corresponds to the polarization of the mineral/water interface coating the surface of the grains. The other process corresponds to the Maxwell-Wagner polarization associated with accumulation of the electrical charges in the pore space of the composite medium. A model of low-frequency conductivity dispersion is proposed. This model is connected to a triple-layer model of electrochemical processes occurring at the surface of silica. This model accounts for the partition of the counterions between the Stern and the diffuse layers. The polarization of the mineral/water interface is modeled by the electrochemical polarization model of Schurr for a spherical grain. We take into account also the DC surface conductivity contribution of protons of the sorbed water and the contribution of the diffuse layer. At the scale of a macroscopic representative elementary volume of the porous material, the electrochemical polarization of a single grain is convoluted with the grain size distribution of the porous material. Finally, the Maxwell-Wagner polarization is modeled using the complex conductivity of a granular porous medium obtained from the differential effective medium theory. The predictions of this model agree well with experimental data of spectral induced polarization. Two peaks are observed at low frequencies in the spectrum of the phase. The first peak corresponds to the distribution of the size of the beads and the second peak is due to the roughness of the grains.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a spectral impedance
653 2 0 |2 Author
|a porous media
653 2 0 |2 Author
|a induced polarization
653 2 0 |2 Author
|a complex conductivity
653 2 0 |2 Author
|a double layer
653 2 0 |2 Author
|a particle size distribution
700 1 _ |a Revil, A.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Kemna, A.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB736
700 1 _ |a Cosenza, P.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Ghorbani, A.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.jcis.2007.12.031
|g Vol. 321, p. 103 - 117
|p 103 - 117
|q 321<103 - 117
|0 PERI:(DE-600)1469021-4
|t Journal of colloid and interface science
|v 321
|y 2008
|x 0021-9797
856 7 _ |u http://dx.doi.org/10.1016/j.jcis.2007.12.031
909 C O |o oai:juser.fz-juelich.de:62080
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
970 _ _ |a VDB:(DE-Juel1)98075
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21