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Abstract

Atmospheric hydrogen peroxide (H,O,) and organic hydroperoxides were measured
from 18 to 30 July in 2006 during the PRIDE-PRD’06 campaign at Backgarden, a rural
site located 48 km north of Guangzhou, a mega-city in southern China. A ground-
based instrument was used as a scrubbing coil collector to sample ambient air, fol-
lowed by on-site analysis by high-performance liquid chromatography (HPLC) coupled
with post-column derivatization and fluorescence detection. The H,O, mixing ratio
over the 13 days ranged from below the detection limit to a maximum of 4.6 ppby,
with a mean (and standard deviation) of (1.26+1.24) ppbv during the daytime (08:00—
20:00 LT). Methyl hydroperoxide (MHP), with a maximum of 0.8 ppbv and a mean (and
standard deviation) of (0.28+0.10) ppbv during the daytime, was the dominant organic
hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide
(BHMP), peroxyacetic acid (PAA), hydroxymethyl hydroperoxide (HMHP), 1-hydroxy-
ethyl hydroperoxide (1-HEHP) and ethyl hydroperoxide (EHP), were detected occa-
sionally. The concentration of H,O, exhibited a pronounced diurnal variation on sunny
days, with a peak mixing ratio in the afternoon (12:00-18:00 LT), but lacked an explicit
diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H,O, was
observed during the evening, suggesting that H,O, was produced by the ozonolysis
of alkenes. The diurnal variation profile of MHP was, in general, consistent with that
of H,O,. The estimation indicated that in the morning the H,O, detected was formed
mostly through local photochemical activity, with the rest probably attributable to verti-
cal transport. It is notable that relatively high levels of H,O, and MHP were found in
polluted air. The unexpectedly high level of HO, radicals detected in this region can
account for the production of hydroperoxides, while the high level of NO, suppressed
the formation of hydroperoxides significantly. High concentrations of hydroperoxides
were detected in samples of rainwater collected in a heavy shower on 25 July when a
typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides,
particularly MHP, resided above the upper boundary layer, which might be transported
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on a regional scale and further influence the redistribution of HO, and RO, radicals. It
was found that hydroperoxides, in particular H,O,, play an important role in the forma-
tion of secondary sulfate in the aerosol phase, where the heterogeneous reaction might
contribute substantially. A negative correlation between hydroperoxides and water-
soluble organic compounds (WSOC), a considerable fraction of the secondary organic
aerosol (SOA), was observed, providing field evidence for the importance of hydroper-
oxides in the formation of SOA found in previous laboratory studies. We suggest that
hydroperoxides act as an important link between sulfate and organic aerosols, which
needs further study and should be considered in current atmospheric models.

1 Introduction

A series of hydroperoxides, including hydrogen peroxide (H,O,) and organic hy-
droperoxides (ROOH), such as methylhydroperoxide (MHP, CH3;OOH), hydrox-
ymethyl hydroperoxide (HMHP, HOCH,OOH), 1-hydroxy-ethyl hydroperoxide (1-HEHP,
CH3;CH(OH)OOH), peroxyacetic acid (PAA, CH3;C(O)OOH) and ethylhydroperoxide
(EHP, CH3CH,OO0H), have been measured in the atmosphere since the measurement
of organic hydroperoxides was pioneered in the 1980s by Hellpointner and Gab (1989).
These reactive species play significant roles in atmospheric processes, such as acid
precipitation, cycling of HO, radicals, and formation of secondary organic aerosol
(SOA). H,0O, is considered to be the most important oxidant for the conversion of S
(IV) to sulfuric acid and secondary sulfate in cloud, fog and rain water at pH<5, thus
contributing significantly to the acidification of clouds and rain (Penkett et al., 1979;
Calvert et al., 1985; Fung et al., 1991; Pena et al., 2001). Organic peroxides such as
MHP, HMHP, and PAA are able to oxidize SO,, but only when H,O, is limited (Lind
et al.,, 1987; Zhou and Lee, 1992). For instance, HMHP is much more soluble than
Hy05 (Hi,0,=7.7x10*Matm™ and Hyyyp=1.7x10°Matm™" at 298K, Sander et al.,
2003) and can decompose rapidly into H,O, and HCHO in the aqueous phase when
pH>5.0 (O’Sullivan et al., 1996; Chen et al., 2008). In addition, H,O, and MHP can
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serve as temporary reservoirs of odd-hydrogen radicals (OH, HO,, CH30,) in the tro-
posphere, because their photolysis and other reactions will lead to the regeneration
of OH radicals, and are intimately involved in the production of odd-oxygen (e.g. O,
O3) (Madronich and Calvert, 1990; Lightfoot et al., 1992; Reeves and Penkett, 2003).
For example, MHP, which is the most abundant organic hydroperoxide in the atmo-
sphere, and has an atmospheric lifetime of 2-3 days and a low level of solubility in
water (Cohan et al., 1999; Wang and Chen, 2006), can be transported to the upper
troposphere at a regional scale without scavenging under deep convection conditions.
As a result, this transportation probably leads to the redistribution of OH radicals in
different regions and different altitudes (Jaeglé et al., 1997; Wennberg et al., 1998;
Cohan et al., 1999; Mari et al., 2000; Ravetta et al., 2001), and H,O, and organic
hydroperoxides can be used as indicators of the oxidizing capacity of the troposphere
(Thompson, 1992). Tropospheric aerosols play an important role in the Earth’s atmo-
sphere and in the climate system. Aerosols scatter and absorb solar radiation (direct
effect) (Andreae and Crutzen, 1997), change cloud characteristics in many ways (in-
direct effect) (e.g. Navakov and Penner, 1993; Lohmann and Feichter, 2005), and
facilitate heterogeneous and multiphase chemistry (Ravishankara, 1997). Increasing
attention is being paid to the organic matter that represents a substantial fraction of tro-
pospheric aerosols (Andreae and Crutzen, 1997). Recently, several laboratory studies
have revealed that secondary organic aerosol (SOA) can be formed from isoprene and
its gas-phase oxidation products through acid-catalyzed aqueous-phase oxidation with
hydrogen peroxide, a remarkably close analogy with atmospheric secondary sulfate
formation (Claeys et al., 2004; Boge et al., 2006; Kroll et al., 2006).

No significant direct emission of H,O, or organic hydroperoxides from natural or
anthropogenic sources has been found, and it is believed that the majority of the
H,O, and ROOH in the gas phase are formed via the bimolecular and termolecular
recombination of peroxy (HO, and RO,) radicals during the daytime. The only known
mechanism for the formation of peroxides in the absence of light is the ozonolysis re-
action of alkenes (Gab et al., 1985; Becker et al., 1990, 1993; Valverde-Canossa et
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al., 2004), which is discussed in detail in Sect. 3.4. This reaction is the main source
of the 1-hydroxyalkylhydroperoxides (1-HAHP) and a source of OH radicals (Atkinson
and Aschmann, 1993; Paulson and Orlando, 1996).

Formation of HO, radicals is predominantly through the photo-oxidation of carbon
monoxide (CO) and volatile organic compounds (VOC) by the OH radical (described
in detail by Lightfoot et al., 1992). The second significant part of HO, is formed dur-
ing the degradation of HCHO and other aldehydes by photolysis or by reaction with
OH radicals (Buffalini et al., 1972; Su et al., 1979). Furthermore, the ozonolysis of
alkenes, the decomposition of peroxy acetyl nitrate (PAN), and the photodegradation
of aromatic hydrocarbons will provide a source of HO, (Finlayson-Pitts and Pitts, 1986;
Seuwen and Warneck, 1995). Alkylperoxy radicals (RO,) are produced by the reaction
of OH radicals with alkanes, e.g. CH,, in the presence of oxygen, and by the decom-
position of alkyl-substituted, excited Criegee biradicals (Atkinson, 1994; Hatakeyama
and Akimoto, 1994; Gab et al., 1995).

The sinks for gaseous H,O, and organic peroxides can be classified according to
different processes, including washout through fog droplets and adsorption on water-
covered aerosols or other wet surfaces; dry deposition; photolysis; and reaction with
OH radicals. Although the importance of the individual processes might differ with
regard to the water solubility of the organic peroxides (Gunz and Hoffmann, 1990;
Watkins et al., 1995a, b), the washout and adsorption processes on wet surfaces are
expected to be dominant.

Field, laboratory and modeling studies have all indicated that the generation and be-
havior of gas-phase H,O, and organic ROOHs are affected by the levels of chemical
components such as NO,, CO, CH,, and VOC. Additionally, meteorological parame-
ters, including solar radiation, relative humidity, temperature, and pressure are of great
importance in controlling the production and the loss of hydroperoxides (Lee et al.,
2000).

Over the past two decades, the distribution and roles of H,O, and CH3;OO0H in the
atmosphere have been investigated by various methods on land, onboard ship, and
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aboard aircraft (Hellpointner and Gab, 1989; Hewitt and Kok, 1991; Das and Aneja,
1994; Fels and Junkermann, 1994; Watkins et al., 1995a, 1995b; Staffelbach et al.,
1996; Heikes et al., 1996; Jackson and Hewitt, 1996; Sauer et al., 1997, 2001; Lee
et al., 1993, 1995, 1998, 2000, 2008; Morgan and Jackson, 2002; Grossmann et al.,
20083; Francois et al., 2005; Walker et al., 2006; Kim et al., 2007). The mixing ratios of
H,O, typically lie between 0.5 ppbv and 5 ppbv worldwide. The MHP mixing ratios mea-
sured in earlier studies are between several pptv and 2.7 ppbv (O’Sullivan et al., 1999;
Lee et al., 2000). Lee et al. (1998) reported a maximum of 14 ppbv H,O, and attributed
this high value to a new mechanism of formation — direct production with biomass burn-
ing plumes, as well as secondary photochemical production. O’Sullivan et al. (1999)
observed maximum H,O, and MHP mixing ratios of 11.5ppbv and 2.7 ppbv, respec-
tively, during flights in the marine troposphere and attributed these high values to the
strong Asian outflow. Moreover, the concentrations of H,O, determined in rainfall sam-
ples ranged from 0.1 uMol/L to 300 uMol/L (Hellpointner and Gab, 1989; Jacob et al.,
1990; Hewitt and Kok, 1991; Sauer et al., 1996, 1997; Pena et al., 2001; Morgan and
Jackson, 2002). Although numerous field measurements of H,O, and organic perox-
ides have been made, most of them were done at 25°-55° N, including North America,
Brazil, Europe, Greenland, South Africa, and in the Atlantic and the northwestern and
central tropical Pacific (Lee et al., 2000). To our knowledge, data for hydroperoxides
on land are not available for the East Asia low latitude region, where the atmospheric
chemistry may be significantly distinguished from other regions on earth. Accompa-
nying rapid industrialization, East Asia has increasing amounts of O3 precursor trace
gases (carbon monoxide, nitrogen oxides, and hydrocarbons) released by industrial,
agricultural and population growth. The Pearl River Delta (PRD) region, extending from
the Hong Kong metropolitan area to the northwest, has been the most economically
dynamic region of mainland China over the last two decades. The high levels of NO,,
SO,, ozone and PM, 5 observed in the PRD region over the past decade are believed
to be associated with the rapid economic development (Zhang et al., 1998; Wang et
al., 2003; Li et al., 2005a). As intermediate photochemical byproducts, hydroperoxides
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can be used to test predictions by photochemical models by comparison with observed
data (Jacob et al., 1996). Therefore, field studies of peroxides are needed urgently to
provide valuable data for investigating the photochemical mechanisms in this region
and to be included in photochemical models.

We present a novel dataset for speciated hydroperoxides measured at a rural site in
PRD that has high mixing ratios of VOC and CO. The objectives of this study were to
investigate the impact of chemical and physical processes on the mixing ratio of H,O,
and organic peroxides, to provide new field evidence of the existence of high mixing
ratios of hydroperoxides in the upper planetary boundary layer (PBL), to examine the
contribution of hydroperoxides to the formation of secondary sulfate and SOA, and
ultimately to assess the value of hydroperoxide measurements for better understanding
the mechanisms of secondary photochemical pollutions and to aid the development of
more robust models.

2 Experimental
2.1 Measurement site

The observations are from the PRIDE-PRD’06 (Program of Regional Integrated Exper-
iments of Pearl River Delta Region) Air Quality Monitoring Campaign that took place
from the 3 to the 30 of July 2006 at Backgarden (23.5° N 113.0° E), a rural site in north-
ern PRD, surrounded by 20 km? of forest and 2.7 km? of lake, located north of the cen-
tral PRD and about 48 km northwest of Guangzhou, which is the capital city of Guang-
dong Province. In addition to the measurement of peroxides, all major trace gases
(NO,, NOy, PAN, SO,, CO, O, biogenic/anthropogenic VOC, etc.), aerosols (mass
concentration, number concentration, chemical compositions), free radicals (OH, HO,,
RO,) and meteorological parameters (temperature, wind direction, wind speed and
relative humidity, rainfall) were monitored at this site by a number of groups.
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2.2 Measurement method for hydroperoxides

The instrument for determining hydroperoxides was located in the uppermost room
of a three story building. Ambient air was drawn by a vacuum pump through a 6m
Teflon tube (1/4 inch O.D.) extending 1.5m above the roof of the building, so that the
air samples were taken about 12m above the ground. The air flow rate was 2.7 sim
(standard liters per minute), controlled by a mass flow controller. The air residence
time in the inlet tubing was less than 2 s, and there was no filter in the inlet system.
The air samples were collected in a thermostatically controlled glass coil collector, at
a temperature of around 10°C. The stripping solution, acidified 18 MQ water (HzPO,,
pH 3.5) was delivered into the collector by an HPLC pump (Agilent 1050) at a rate of
0.2mLmin~" to collect hydroperoxides. The coil itself is about 30 cm long and the tube
has an effective length of ~100cm and 2mm |.D. (Sauer et al., 1999). The scrubbing
coil is similar to that used in earlier studies (Lazrus et al., 1986; Neeb et al., 1997;
Sauer et al., 1999, 2001; Grossmann et al., 2003; Frangois et al., 2005).

The collection efficiency of the coil was determined as follows. First, vapor con-
taining H,O, and MHP was generated by a saturated vapor generator (Lind and Kok,
1986; Li et al., 2004). The air stream flowed over the thermostatically controlled quartz
fiber membrane (15+0.2°C), which was saturated by the standard solution, at a rate
of 0.2slm. Lind and Kok (1986) demonstrated that the air stream rate should be less
than 1slm in order to ensure Henry’s Law equilibrium. Second, additional pure air
(2.5slm) was added to the generated vapor of hydroperoxides via a three-port valve.
Then the mixed air stream of standard gas of H,O, and MHP was drawn into the
scrubbing coil collector at a total flow rate of 2.7 sim under the conditions used for at-
mospheric measurement. Using a solution containing 2.4x10™° M H,O, and 3.5x107°
M MHP, the levels of gaseous hydroperoxides in the standard gas were calculated
to be ~1ppbv for H,O, and ~0.5ppbv for MHP. The concentration of this standard
gas was also determined using a Horibe tube in a cold trap of ethanol/liquid nitrogen
at ~ —90°C (Hewitt and Kok, 1991), for collection and for HPLC analysis (described
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below). The standard gas concentration determined by the cold trap method was con-
sistent with the concentration calculated by Henry’s Law (HH202=1 .8x10°Matm™" and

HMHP=5.7x1O2 Matm™' at 28-8 K, Sander et al., 2003). After collection, the stripping
solution was analyzed by HPLC. The collection efficiency of the coil was estimated
using the ratio of the measured concentration and the known concentration of the stan-
dard gas, with >98% for H,O, and ~85% for MHP at 10°C. These values are in agree-
ment with those of previous studies (Sauer et al., 1997, 2001; Francois et al., 2005).
The heterogeneous decomposition of H,O, and MHP in the coil was negligible under
the experimental conditions, as proved by previous studies (Sauer et al., 1996, 2001).

After the sampled air passed through the coil collector, the stripping solution was
removed from the separator using a peristaltic pump and immediately injected manually
into the HPLC valve, from which 100 uL was analyzed by HPLC. Because of the lack
of an auto-sampler for the HPLC analysis, the sample analysis was performed in a
quasi-continuous mode with an interval of 20-60 min, and thus only a few samples
were measured at night and in the early morning. Several rain samples were collected
during a heavy shower using a glass funnel (diameter 10 cm) connected to a 5m Teflon
tube (1/8-inch O.D.), from the end of which the rain samples were collected and injected
immediately into the HPLC column.

The HPLC was done with post-column derivatization using p-hydroxyphenylacetic
acid (POPHA) and fluorescence detection. The basis of this method is to quantify the
fluorescent dimer produced by the stoichiometric reaction of POPHA and hydroperox-
ides through catalysis (Gab et al., 1985; Hellpointner and Gab, 1989; Kurth et al.,
1991; Lee et al., 1995; Sauer et al.,, 1996, 1997, 1999, 2001; Grossmann et al.,
2003; Francois et al., 2005; Xu and Chen, 2005; Walker et al., 2006). The catalyst
used in this study was Hemin (Xu and Chen, 2005; Chen et al., 2008). The mobile
phase, controlled by the HPLC pump (Agilent, 1200) at a constant rate of 0.5 mL min~",
was a HiPO, solution at pH3.5 (Sigma-Aldrich, 85% for HPLC). The hydroperox-
ides were separated in a 5u M reversed-phase C;g HPLC column (4.6 mmx250 mm,
ZORBAX, SB-Aq, Agilent), which was cooled to ~2°C to stabilize the hydroperox-
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ides. After separation, the eluate was introduced into a 3m Teflon coil at 42(x1)°C
for post-column derivatization. The fluorescent reagent, 8x107° M Hemin (Fluka) and
8x107°> M POPHA (ACROS ORGNICS), was adjusted to pH 10-11 with NH,CI/NH,OH
buffer solution. The flow rate of the fluorescent reagent was 0.2mL min~'. The fluo-
rescence signal of the biphenyl derivative formed in the derivatization reaction was
determined at wavelengths of 1g,=315nm and Ag,,=400 nm using a fluorescence de-
tector (Agilent 1200).

Sample blanks were determined at least twice daily by measuring the stripping so-
lution at the stripping solution outlet of the coil after stopping the air vacuum pump for
10 min. H,O, was occasionally found in the blanks but only in trace amounts. Mul-
tipoint calibration of the HPLC for analysis of hydroperoxides was performed weekly
with H,O,, MHP and EHP standard solution in the range of 1x1078~1x107° M, and
single-point calibration was done three times a day with a mixing standard solution of
H,O,, MHP and EHP. Organic hydroperoxides were identified by comparing the re-
tention times with those of reference substances. The detection limit (d.l.), defined as
three times the standard deviation of the analytical blanks, was 0.012 uMol L~ using
a 100 uL sampling loop. This corresponded to a d.l. of about 20 pptv for H,O, and
organic hydroperoxides in the gas phase under these sampling conditions.

H,O, was purchased from Sigma-Aldrich (35%), and fresh solutions were prepared
by serial dilution of the 0.35% stock solution. Methyl hydroperoxide and ethyl hydroper-
oxide were synthesized from H,O, and dimethyl sufate or diethyl sulfate as described
(Rieche and Hitz, 1929; Kok et al., 1995; Lee, et al., 1995). The hydroxymethy hy-
droperoxide (HMHP), 1-hydroxy-ethyl hydroperoxide (1-HEHP) were synthesized from
aqueous H,O, and formaldehyde or acetaldehyde (Rieche and Meister, 1935; Zhou
and Lee, 1992; Lee et al., 1995). The concentrations of stock solutions and stan-
dard solutions were determined using KMnO, and Kl/Na,S,0O/starch every two weeks
(Johnson and Siddigu, 1970; Mair and Hall, 1970). All reagents and standard solution
were prepared with 18 MQ Milli-Q water (Millipore), and were stored at 4°C in a refrig-
erator.
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2.3 Measurement methods for other trace gases

HO, radicals were measured at the Backgarden site by a laser-induced fluorescence
instrument, operated by Forschungszentrum Juelich (FZJ). Briefly, ambient air is sam-
pled continuously into a low-pressure detection chamber, where HO, is chemically
converted to OH by reaction with added NO. The resulting OH is then detected by
laser excited fluorescence at a wavelength of 308 nm. The instrument is calibrated by
using the quantitative photolysis of water vapour in synthetic air at 185 nm as a radical
source. The accuracy of the measurements is estimated to be 20% for this campaign.
Details of the instrument and its calibration can be found in Holland et al. (2003).

Semi-continuous measurements of WSOC were made by University of Tokyo (UT)
using a particle-into-liquid sampler (PILS) followed by online quantification of TOC ev-
ery 6 min using a total organic carbon (TOC) analyzer. Ambient aerosol was sampled
at a flow rate of 16.7 L/min by the PILS, which used a steam saturator to grow the
aerosol to sizes that can be collected by inertial impaction. The carbonaceous com-
pounds in the liquid sample were then quantified online with the TOC analyzer. Details
of the instrument can be found in Miyazaki et al. (2006).

The sulfate measurements were performed by the Aerodyne Aerosol Mass Spec-
trometer (AMS), operated by University of Tokyo (UT). The AMS can measure size-
resolved chemical composition of ambient non-refractory (vaporized at 600°C under
high vacuum) submicron aerosol for an integration time of 10 min. The AMS consists
of a particle sampling inlet, a particle time-of-flight (PTOF) chamber, and a vapor-
izer/ionizer that is interfaced to a quadrupole mass spectrometer (QMS). Details of the
instrument can be found in Takegawa et al. (2005).

The SO, was determined by Peking University (PKU) using SO, Analyzer (Thermo,
Model 43C) with a time resolution of 1 min. The data of CO, O5 and NO, used in this
study were obtained from the combined data set of PKU, UT and FZJ. During the pe-
riod we discuss in this study, the CO was measured by a CO Analyzer (Thermo, Model
48C) with a time resolution of 1 min, operated by PKU, and a non-dispersive infrared
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absorption (NDIR) instrument with an integration time of 1 min (Model 48, TECO), op-
erated by UT (details of the instrument described by Takegawa et al. 2006), and the O
was mainly measured by a O3 Analyzer (Thermo, Model 49C) with a time resolution of
1 min operated by PKU. NO, and NO, were measured using a NO-O5 chemilumines-
cence detector combined with a photolytic converter and a gold tube catalytic converter
(Takegawa et al., 2006). NO, compounds were catalytically converted to NO on the
surface of a gold tube heated at 300°C. The photolytic converter system used for the
NO, measurement was manufactured by the Droplet Measurement Technologies, Inc.,
USA.

3 Results and discussion
3.1 General observations

A total of 354 air samples were characterized using the scrubbing coil collector from
the 19 to the 30 of July 2006 during the PRIDE-PRD’06 campaign. The major hy-
droperoxide present in the air samples collected at the Backgarden site was H,O, with
mixing ratios between below the detection limit (20 pptv) and 4.6 ppbv, and MHP with
mixing ratios between <20 pptv (d.l.) and 0.8 ppbv. The organic peroxides BHMP and
PAA were often detected, and HMHP, 1-HEHP and EHP were occasionally detected,
but all these species were present at only several-decade pptv level under these ex-
perimental conditions. In order to calculate the mean of the observed mixing ratios,
any value below the detection limit was treated as zero. With regard to all samples,
the mean (and standard deviation) mixing ratios during the daytime (08:00-20:00 LT)
were 1.26+1.24 ppbv for H,O, and 0.28+0.10 ppbv for MHP. The mean values at night
(20:00-02:00 LT) were 0.74+0.62 ppbv for H,O, and 0.19+0.10 ppbv for MHP. The mix-
ing ratios of H,O, and MHP are in agreement with those reported in the literature (Hell-
pointner and Gab, 1989; Hewitt and Kok, 1991; Das and Aneja, 1994; Watkins et al.,
1995a, 1995b; Jackson and Hewitt, 1996; Sauer et al., 1997, 2001; O’Sullivan et al.
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1999; Morgan and Jackson, 2002; Moortgat et al., 2002; Grossmann et al., 2003; Lee
et al., 1993, 1995, 1998, 2000, 2008; Francois et al., 2005; Xu and Chen, 2005; Walker
et al., 2006; Kim et al., 2007).

Temporal profiles of the H,O, and MHP mixing ratios for the time of the campaign
are shown in Fig. 2. The maximum mixing ratio of H,O, and MHP was found on
19 July, and this will be discussed in detail later. On sunny days with low levels of
NO, and SO,, H,O, showed pronounced diurnal variations, with peak mixing ratios
in the afternoon (12:00-18:00LT) and low values at night and in the early morning.
Sometimes, a second peak occurred in the evening between 20:00 and 02:00 LT. The
diurnal variation of MHP was consistent with, but less pronounced than, that of H,O,.
The general diurnal cycle of H,O, observed at Backgarden was similar to that observed
in earlier studies (Sauer et al., 2001; Grossmann et al., 2003). Over the 13 days of
measurement, HMHP was detected in only a few samples; probably resulting from the
heterogeneous decomposition of HMHP at glass surfaces during sampling (Neeb et
al., 1997; Sauer et al., 2001).

Figure 3 depicts the hourly averaged mixing ratio profiles of H,O, and MHP with
the vertical bars showing the standard deviation of the measured values. A similar
averaged diurnal profile for H,O, has been reported (Das and Aneja, 1994; Sauer et
al., 2001). The concentration of H,O, began to rise in the morning (~10:00LT) and
reached a maximum mixing ratio at 13:00 LT. The factors responsible for the H,O, diur-
nal variation are discussed in detail in Sect. 3.2.2. The level of H,O, remains relatively
high in the afternoon and the mixing ratio decreased slowly from sunset to 24:00 LT.
The diurnal profile of MHP is largely coincident with that of H,O, in the daytime, but
remained at an almost identical level after sunset. This slower loss of MHP at night can
be explained by its lower level of solubility (Hy,o,/Husp=~260, at 298K, Sander et al.,
2003).

With regard to the meteorological conditions and levels of hydroperoxides, three dis-
tinct periods could be distinguished. (i) At the beginning of the measurement, 19—
21 July, days were sunny with slight breeze, and hydroperoxides exhibited high mix-
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ing ratios during the days. (ii) The second period, 23—26 July, was influenced by ty-
phoon Kaemi, which came across most of the PRD but, in particular, the central and
eastern parts, resulting in more heavily polluted conditions than normal in this region
(Z. B. Yuan, 2007, personal communication). High levels of hydroperoxides were ob-
served also on the 24 and 25 of July, two sunny days. (iii) During the last days of the
campaign, 27-30 July, the local weather conditions were cloudy and rainy, and daytime
values of hydroperoxides were low.

The low daytime average H,O, values probably result from several factors, and the
most important one is that the weak photochemical activity on cloudy days produces
fewer HO, radicals compared to sunny days, resulting in low-level production of hy-
droperoxides. Moreover, the high levels of NO, will significantly suppress the formation
of hydroperoxides by consuming their precursors, peroxy radicals. Additionally, effi-
cient scavenging of H,O, on wet surfaces (leaves and fog droplets) and water-covered
aerosols, in particular with a high level of SO, and high relative humidity conditions,
should partly account for the low levels of H,O,.

3.2 Photochemistry on sunny days
3.2.1 Pattern of hydroperoxides and their precursors

The meteorological conditions during 19—21 July at Backgarden can be treated as iden-
tical. On these three sunny days, the maximum temperature was 35°C, and the relative
humidity decreased from ~90% in the early morning to ~60% at noon. After reaching a
minimum level of ~45% in the afternoon, relative humidity increased gradually until the
next morning. The wind speed was steady at around 0—-3 m/s. The wind direction on
19 July turned clockwise via southeast in the morning to southwest at noon and back
to southeast gradually in the late afternoon, and then remained southeast during the
night. A similar pattern of wind direction was observed on the next two days.

The maximum mixing ratio of H,O, and MHP was measured on 19 July, a sunny day
with a slight breeze. As Fig. 4 shows, the concentration of NO, stayed very high from
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night to the early morning, with 36 ppbv at 08:15LT. The high NO, mixing ratio might
have been caused by the accumulation of surface emission below the nocturnal inver-
sion layer. After 08:15 (LT), the concentration of NO, decreased rapidly to ~8 ppbv at
10:30LT, and remained at a relatively low level (1~3 ppbv) until sunset. The rapid drop
of NO, probably resulted from the growing height of the mixing layer and changes in
the wind direction. On the morning of 19 July, the wind direction turned clockwise via
northeast (06:00 LT) to east (08:00LT), and then to south (09:30LT). The mixing ratio
of H,O, began to increase markedly at 08:45 and reached 2.8 ppbv at 10:30 LT, which
is consistent with the sudden drop of NO, detected, and the hydroperoxides showed
a high level during the daytime. A similar diurnal trend of NO, was observed during
the daytime on 20-21 July. Chin et al. (1994) suggested that a NO,/NO ratio of <0.3
could be used to determine when an air-mass can be described as photochemically
aged. The NO,/NO, ratio was <0.3 between 12:00 and 17:00 LT during the three days,
indicating that the air could be described as photochemically aged. This classifica-
tion was supported also by the ratio of toluene/benzene. Li et al. (2005b) suggested
that a value of toluene/benzene below 0.5 is indicative of photochemically aged air
due to the shorter atmospheric lifetime of toluene compared to benzene. Therefore,
the high levels of hydroperoxides in this period were thought to be due to a combina-
tion of photochemically aged air with very high levels of HO,, relatively low levels of
NO, (compared to the other days during the observation at this site), and little surface
deposition. This will be discussed in detail in Sect. 3.2.2.

As described previously, the formation of hydroperoxides can be represented by re-
actions (1) and (2) (k4 and k, are taken from Sander et al. (2003), at 298 K):

HO, + HO, % H,0, + 0, k; = 1.5 x 10~ "2cm®molecule's~" (1)

HO, + HO, + (M) =5 H,0, + (M)

M is air, the calculation of k should take into account the pressure dependence and the
temperature dependence. For systems containing water vapor, the water vapor depen-
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dence expressed by the multiplicative factor: 1+1.4x10'21[H20]exp(2200/T) should
also be included. The expression for k is described in detail by Stockwell (1995).

CH30, + HO, 22, CH;00H + O, k, = 5.2 x 10~ '2cm3molecule™'s™! (2)

However, the NO reaction with peroxy radicals will compete with the formation of
hydroperoxides (k3 and k, are taken from Sander et al. (2003), at 298 K):

HO, + NO 22, OH + NO, ks = 8.1 x 10~ "2cm®molecule™'s™" 3)
CH30, + NO X4, CH,0 + NO, Kk, = 7.7 x 10~ "2cm3molecule™'s™! (4)

Hence, the atmospheric lifetime of HO, radicals can be estimated as:
3 1
THO,-HO, = m

1

Tuo. e —— 6
HO,-CH30, k2 [CHa03] (6)

(5)

1
THo,-NO = k3 [NOJ

(7)

1
TCH,0,-NO = K, INOJ

(8)

where Tyo, _Ho,, THo,-cH,0, @Nd Tho,-no are the lifetimes of HO, radicals due to the
self-recombination reaction, CH3O, reaction and NO reaction, respectively; Tcy,0,-no
is the lifetime of CH30, radicals due to the NO reaction. [HO,], [CH;0,] and [NO] are
the concentrations of HO,, CH3;0, and NO, respectively.
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Equations (1)—(4) can be used to estimate if the formation of hydroperoxides is dom-
inant compared with the NO reaction. In the clean atmosphere, the typical concentra-
tion of HO, radicals is ~1 x 108 molecule cm_s; thus, when the concentration of NO is
>100 ppty, the reaction of NO with HO, and RO, will suppress the production of H,O,
and MHP substantially, since the reactions of NO with peroxy radicals are faster than
recombination reactions of peroxy radicals (Lee et al., 2000). Moreover, it is calculated
that an NO mixing ratio below 10 pptv is needed for H,O, to dominate over the reaction
between HO, and NO (Reeves and Penkett, 2003; Crutzen and Zimmermann, 1991;
Finlayson-Pitts and Pitts, 1986). Such low concentrations of NO can exist only in very
remote regions of the troposphere. However, on the basis of Eq. (1), this conclusion
should be re-evaluated for a region with very high levels of HO, radicals.

At Backgarden, the average NO mixing ratio on 19-21 July was a relatively low value,
~80 ppty, in the afternoon (14:00-18:00 LT). However, on 19-21 July the average NO
mixing ratio at 10:30-14:00 LT was relatively high, ~280 pptv, and at the same time
the levels of H,O, and MHP increased rapidly up to almost the maximum value of
the day. This value of NO (280 pptv) was much higher than those reported for earlier
studies (Lee et al.,, 2000; Reeves and Penkett, 2003). Hence, our measurements
represent a novel dataset showing that hydroperoxides can be formed and exhibit high
mixing ratios in the daytime under polluted air with relatively high mixing ratios of NO,,.
This situation may be attributed to the exceptionally high mixing ratio of HO, radicals
(~2><1O9 molecule/cm® at noon) produced by oxidation of VOC and CO at Backgarden.

3.2.2 Kinetics analysis

In general, j(NO,) can be used as an indicator for photochemically effective radiation.
At Backgarden, j(NO,) usually began to rise after 06:00 (LT), reached maximum val-
ues of ~8x1073s™" at noon and then returned to near-zero after 19:00 (LT) (personal
communication by B. Bohn, Forschungszentrum Juelich). During 19-21 July, the maxi-
mum mixing ratios of H,O, were observed during the daytime, and the diurnal variation
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of H,O, was generally similar to that of j(NO,), but the peak values were 2~3 h later.
Generally, the photo-oxidant formation began about 3 h after the increase of radiation.
The peak time of H,O, approached that of O5 on 19 and 20 July, and the diurnal pro-
files of these two species were similar. Additionally, peroxy acetic acid (PAA), which is
produced mainly by photo-oxidation of acetone and PAN, was often detected on 19—
21 July. On the basis of this evidence, we can infer that H,O, and MHP were produced,
to a large extent, in the daytime by the local photochemical process during the three
days.

Even more direct evidence of the photochemical formation of hydrogenperoxide can
be obtained from the diurnal profiles of HO,, which were also measured at Backgar-
den. The HO, concentration can be used to calculate the chemical production rate of
H,O,. The mixing ratios of HO, and H,O, measured on July 21 are shown in Fig. 5.
The mixing ratios of H,O, and HO, are almost zero at the high concentration of NO,
before 09:30 (LT). The sharp increase of H,O, at about 09:45 (LT) on July 21 coin-
cides with the decrease of the NO, mixing ratio, which might be explained by vertical
exchange. During 10:00-12:00 LT, H,O, continued to rise at a rate of ~0.81 ppbv h'1,
and the chemical production rate of H,O, was ~0.74 ppbv h™', as determined from
the HO, concentration of ~8.9x10® moleculecm™. The calculation adopts the ex-
pressions recommended by Stockwell (1995), and the HO, concentration and tem-
perature uses the average value during the period, resulting in a rate coefficient of
6.5x10™ 2 cm® molecule™' s~ at 60% relative humidity. This indicates that most of the
H,O, increase was produced by in situ formation and the rest might be attributed to the
net effect of vertical mixing. As shown in Fig. 5, the diurnal cycles of HO, and H,0,
were, in general, consistent in the afternoon until 17:00 (LT); after that, the level of
H,O, had a weak correlation with that of HO,. It is worth noting that the relative humid-
ity rose rapidly after 17:00 LT, while the concentration of NO remained low (~30 pptv)
in the evening of 21 July.

The decrease of H,O, during the late afternoon until the night may be attributed
to the following reasons. First, considering the high solubility of H,O, (Lind and Kok,
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1994; O’Sullivan et al., 1996), the observed low levels can be explained by increased
relative humidity (~80% at 21:00LT), which results in greater wet deposition of H,O,
at night than during the daytime. Secondly, the dry deposition of hydroperoxides on
the Earth’s surface will become very pronounced under a shallow inversion and at a
low wind speed. The wind speed in the evening on 21 July was ~1m/s; therefore,
dry deposition on the surface might have acted as an important sink for loss of H,O,.
Moreover, Walcek (1987) and Wesley (1989) have found that the deposition rate of
H,O, over trees is much higher than in the free troposphere. Hence, the low mixing
ratios of H,O, might be due, in part, to the deposition on the leaves of the dense forests
surrounding the observation site. Furthermore, when the temperature decreased dur-
ing the night, Henry’s Law constant of H,O, will increase, resulting in a removal of
H,O, from the gas phase into the liquid phase. As a result, the vast lake adjacent to
the observation site might be substantially responsible for the decrease of H,0,.

3.2.3 Impact of local meteorology on hydroperoxides

The two sunny periods discussed here suggests that the hydroperoxide formation at
Backgarden is, to a large extent, a local phenomenon. High levels of hydroperoxides
were observed in the two sunny periods between 19-21 and 24-25 July. The mixing
ratios of hydroperoxides were similar in the two periods. Moreover, the diurnal variation
of H,O, showed a positive correlation with O3 on 24 July, as shown in Fig. 4, with the
peak time of H,O, 2-3 h later than that of O5. A ratio of toluene/benzene of <0.5 was
observed between 12:00 LT on 24 July to 21:00 LT on 25 July, with a few exceptions in
the early morning of 25 July. This indicates that during that time the air at Backgarden
influenced by the typhoon front was photochemically aged. All the evidence indicates
that local photochemical activity contributed substantially to the levels of hydroperox-
ides during 24 and 25 July.

It is worth noting that the dominant wind directions in the two sunny periods were op-
posite. As mentioned previously, southeasterly winds prevailed at the observation site
during 19-21 July. On 24 and 25 July, the wind direction at Backgarden was northerly
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and veered to northwesterly in the afternoon, consistent with that of back trajectories
obtained from NOAA (www.arl.noaa.gov). The wind speeds measured during the day-
time of these two periods were similar, at ~2 m/s, ensuring transport of air masses over
distances ~30 km between sunrise and the maximum observed photo-oxidant values.
This suggests that the levels of hydroperoxides at Backgarden were not influenced by
transport at low wind speed.

Thus, much of the variation of hydroperoxide mixing ratios observed at Backgarden
on these sunny days can be attributed, to a large extent, to the local photochemical
drive.

3.3 Rain

The heavy shower that started at 21:20 LT on 25 July and lasted for 40 min was brought
by the typhoon Kaemi. At 17:00 LT, the wind direction turned from north to northwest,
and the mixing ratios of NO,, SO, and CO began to rise, reaching 19 ppbv, 9 ppbv
and 1.6 ppmyv, respectively, at 21:00 LT, while O; decreased from 54 ppbv to 8 ppbv, as
shown in Fig. 4. At the same time, the levels of hydroperoxides decreased rapidly, i.e.,
H,O, went from 3.2 ppbv to 0.9 ppbv and MHP went from 0.6 ppbv to 0.3 ppbv. These
changes were interrupted at 21:20 LT when there was a heavy shower at Backgarden.
When the rain began to fall, the temperature at ground level was 302 K. The shower
lasted for ~40 min with lightning activity. During the shower, three rainfall samples were
collected and analyzed immediately. The maximum concentration of H,O, in the rain
samples, 21 Mol/L, was detected at the beginning of the shower. This concentration is
within the range reported for earlier studies (Hellpointner and Gab, 1989, Jacob et al.,
1990; Hewitt and Kok, 1991; Sauer et al., 1997; Morgan and Jackson, 2002). Moreover,
MHP, which is seldom observed in rain samples (Hellpointner and Gab, 1989; Pena et
al., 2001; Reeves and Penkett, 2003), was detected in the rain samples at Backgarden
at a concentration of 1.1 uMol/L. This value may represent the concentration of MHP
in cloud water. If we assume that the MHP value in the gas phase at the height of the
cloud base was the same as that detected at ground level, ~0.5 ppbv, the equilibrium
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concentration of MHP in cloud water is estimated to be 0.2 u M, on the basis of Henry’s
Law (H,\,|,4|p=4.16x102 Matm'1, 293K, Sander et al., 2003). This estimated value is
much smaller than the concentration of MHP detected in the rainwater, which implies a
higher gas-phase level of MHP in the clouds compared to that at ground level. Similarly,
this higher concentration above PBL (1~2km) can be estimated by Henry’s Law. The
ambient temperature will decrease 6~7 K when the altitude increases by 1 km; thus,
the temperature at the height of the cloud base can be estimated to be ~293 K, while
the temperature at ground level was 302 K. According to the concentration of MHP
detected in the rain (1.1 uMol/L), the gas-phase MHP mixing ratio above PBL was
~2.6 ppbv. This estimated value is slightly higher than those reported for earlier field
studies in which MHP was detected directly by aircraft (O’Sullivan et al., 1999; Lee et
al., 2000). MHP may be of great importance in the redistribution of OH radicals along
with the driving force of atmospheric chemistry (Wennberg et al., 1998; Cohan et al.,
1999; Ravetta et al., 2001; Mari et al., 2000). Our measurement may be new evidence
for the existence of high mixing ratios of MHP at the height of the PBL.

The levels of hydroperoxides after the shower lend support to the deduction that high
mixing ratios of hydroperoxides occur in the PBL. H,O, and MHP exhibited relatively
high mixing ratios of 2.1 ppbv and 0.64 ppbv, respectively, immediately after the shower;
meanwhile, the mixing ratios of NO,, SO, and CO decreased to relatively low values
due to the dilution and scavenging effects, as shown in Fig. 4. The mixing ratios of
hydroperoxides after the shower were even higher than they were before the shower.
Considering the much higher solubility of H,O, than that of NO,, SO, and CO, we
suggest that vertical convection might contribute significantly to the increased H,O,
and MHP mixing ratios, for the following two reasons. First, the air mass in the upper
boundary layer may be carried down to the land surface when rain falls. As a result,
the gas-phase H,0O, above PBL that was not washed out by the shower might affect
the mixing ratio at low altitudes. Second, the falling rain and rainwater on the ground
(e.g. on the leaves of plants ) might release H,O, and MHP into the gas phase during
and after the shower, because of the decrease of Henry’s Law constants due to the
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increase of temperature with descending altitude. In addition, owing to the low level of
solubility and its estimated 2—3 days atmospheric lifetime (Cohan et al., 1999; Wang
and Chen, 2006), a fraction of the increased MHP might be introduced partly by the
advection of typhoon from other regions. Moreover, although the measurement of
VOC was interrupted in the hours following the shower, the low mixing ratio of alkenes
(~2 ppbv) at around 21:20 LT indicated that the ozonolysis alkenes might have a minor
impact on the level of hydroperoxides during the shower.

Overall, this measurement of hydroperoxides during the shower may provide evi-
dence for the high mixing ratio of MHP above the boundary layer. This mixing ratio of
MHP might potentially influence the redistribution of HO, and RO, radical in the PRD
on a regional scale.

3.4 Formation of hydroperoxides by ozonolysis

The ozonolysis of alkenes (e.g. isoprene, terpenes, ethene, propene and isobutene)
can produce a variety of peroxides (Gab et al., 1985, 1995; Becker et al., 1990, 1993).

It is proposed that ozonolysis proceeds by the initial insertion of the ozone into the
double bond forming a primary ozonide, and decomposes to form excited Criegee
intermediates (ECI) [R{R,COO]* and a carbonyl compound (Géab et al., 1985). ECI
are biradicals with excess energy, and some of them will become stabilized Criegee
intermediates (SCI) R{R,COO by interaction with the medium, and the SCI can re-
act further to produce hydroperoxides. Recent laboratory studies have revealed that
R{R,C(OH)OOH can be formed by the reaction of SCI with water vapor (Horie et al.,
1994; Neeb et al.,, 1997; Sauer et al.,, 1999; Valverde-Canossa et al., 2001). This
R{R,C(OH)OOH decomposes primarily to H,O, and a carbonyl compound R;COR,,
as shown in the following reactions (R4 and R, are alkyl groups):

R,R,COO + H,0 — R,R,C(OH)OOH (9)
H,COO + H,0 — HOCH,00H (R, =H,R, = H) (10)
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The other ECI undergoes a series of reactions, yielding products such as HCHO,
HCOOH, CO, CO,, H,O and radical species including OH, HO,, and organic radi-
cals (Donahue et al., 1998; Neeb and Moortgat, 1999; Mihelcic et al., 1999; Kroll et
al., 2001). It is suggested that the ozonolysis of alkenes might be an important source
of OH, HO, and organic radicals at night or under conditions of low solar intensity
(Paulson and Orlando, 1996; Bey et al., 1997; Ariya et al., 2000).

There is some evidence that H,O, and MHP were formed in the evening. As shown
in Fig. 6, a high H,O, mixing ratio was detected after sunset (19:20LT) on July 24;
in particular, a second peak (~1.9 ppbv) was observed during the evening. Relatively
high mixing ratios of alkenes (~8 ppbv), particularly isoprene (~5 ppbv), were detected
during the evening on 24 July, compared to the other nights. The mixing ratio of H,O, at
21:00 LT was about half of the maximum value observed during the daytime. However,
the level of HO, at this time was ~3x 108 moleculescm™2, only ~13% of the maximum
value observed at midday, as shown in Fig. 6. This high level of H,O, production
cannot be attributed to only the recombination of HO, radicals, suggesting that the for-
mation via the ozonolysis of alkenes under moist atmospheric conditions (70% relative
humidity) contributes substantially to the production H,O, during the evening. Further
evidence for this pathway comes from the fact that HOCH,OOCH,OH (BHMP) was
observed for a considerable length of time only during the night of 24 July. The ap-
parent precursor of BHMP is HMHP (Gab et al., 1985), which is a unique product of
the ozonolysis of exocyclic biogenic alkenes (Valverde-Canossa et al., 2001). HMHP is
formed by CH,OO biradicals, which are produced in the ozonolysis of terminal alkenes,
as shown in reaction (10), while the formation of BHMP can be expressed by Eq. (7):

HOCH,OOH + HOCH,O0OH — HOCH,OOCH,OH + H,0 (12)

Therefore, the reaction of alkenes with O3 can be suggested as a source of hydroper-
oxides at night at the Backgarden site. Grossmann et al. (2003) proposed that the
ozonolysis of alkenes was a source of H,O, at night at Pabstthum, Germany.
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It is worth noting that MHP had a diurnal profile similar to that of H,O, in the evening
at Backgarden, and MHP also exhibited a second peak 0.4 ppbv at night on July 24.
This level of MHP at night was much higher than those reported for other continents
(Hellpointner and Gab, 1989; Jackson and Hewitt, 1996; Sauer et al., 2001; Gross-
mann et al., 2003; Walker et al., 2006).

3.5 Hydroperoxide contribution to aerosols
3.5.1 Role of hydroperoxides in the formation of secondary sulfate

Atmospheric aerosols are responsible for the deterioration of air quality in industrialized
areas and adversely affect human health and welfare. A major component of aerosols
in North America, Europe, and Asia is secondary sulfate resulting from the atmospheric
oxidation of anthropogenically emitted sulfur dioxide (SO,) (US Environmental Protec-
tion Agency, 2001). Therefore, the oxidants and oxidation processes involved in the
formation and growth of secondary sulfate are important subject in need of further
study, especially when taking into account the long-range transport of anthropogenic
sulfate aerosols (Perry et al., 1999). During the PRIDE-PRD’06 campaign, sulfate
present in the aerosol phase was determined to be a major component, 10~60%, of
PM, 5 mass (S. Guo, 2008, personal communication, Peking University). The main ox-
idation process for SO, in the atmospheric gas phase is its reaction with OH radicals,
see Egs. (8)—(10) (Finayson-Pitts and Pitts, 1986):

S0, + OH <4, HOSO, (13)

HOSO, + 0, -4 HO, + SO, (14)

SO; + H,0 — H,S0, (15)

— d[SO,]/dt = kP[OH][SO,] (16)
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al., 2004).

However, it is suggested that the aqueous phase reaction with H,O, and O; is the
main route for SO, oxidation. The aqueous-phase oxidation with H,O, accounts for
60~80% of the total oxidation of SO, in the atmosphere, especially when the pH is
<4.5 (Penkett et al., 1979; Calvert et al., 1985). Organic hydroperoxides such as MHP,
HMHP and PAA are also able to oxidize SO, (Lind et al., 1987; Zhou and Lee, 1992).
At the pH range of atmospheric interest (pH=2-7) most of the S(IV) species is in the
form of the bisulfite ion (HSO;). Reactions leading to the formation of sulfuric acid by
hydroperoxides in the aqueous phase are as follows (Hoffmann and Edwards, 1975):

(effective bimolecular rate constant) (Atkinson et

SO, + HyO « HSO; + H* (17)
HSO; + H,0, — HSO;, + H,0 (18)
Ry = —d[S(IV)]/dt = kig[H*[H0,][S(IV)] (Ms™) (19)
R, =10"%LR, (mol(L of air)~'s™") (20)
HSO; + CH;00H + H* 22 SO2~ + 2H* + CH,0H 21)
Raq = koy[H*][CH3O0H]HSO;] (22)
HSO; + CH;C (0) OOH + H* X2 SO + H* + CH,COOH (23)

kig=7.5+1.6x10" M~ s™" at 298K, ky1=1.7£0.3x10" M~?s™" at 291K, (Seinfeld and
Pandis, 1998), L is the liquid water content (g H20/m3 air)

While the total amount of dissolved S(IV) always exceeds that predicted by Henry’s
Law for SO, alone, and is enhanced at high pH values, the reaction of H,O, with S(IV)
is catalyzed by H* ions and is faster at low pH. Therefore, the rate of S(IV) reaction
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with H,O, is practically independent of pH over the pH range of atmospheric interest
(Schwartz et al., 1984). Similarly, the reaction of HSO, with MHP is independent of
pH. The oxidation of S(IV) to S(VI) by H,O, in the aqueous phase is so fast that it can
deplete the limiting compound within 1 h at pH<4.5 (Kelly et al., 1985). Considering
the rapid loss of H,O, into the aqueous phase due to its high Henry’s Law coefficient,
we propose that H,O, may contribute significantly to the formation of sulfate (SOi‘) on
droplets and aerosols covered by a water-soluble layer.

Evidence of SOi‘ formation by H,O, oxidation was seen on 21 July, as shown in
Fig. 7. Between 13:30 and 15:30LT, the mixing ratio of NO,, SO, and especially
CO varied slightly, the wind speed remained constant at ~2ms~" and the wind di-
rection was southwesterly. Therefore, although it is well recognized that the sulfate
can be transported to long distance (Perry et al., 1999), the transport might have a
minor effect on the concentration of sulfate at the observation site during the above
two-hour period. The high mixing ratio of H,O, lasted from midday to the afternoon,
while SO, displayed relatively low mixing ratios but increased slightly after midday.
Meanwhile, the concentration of sulfate in the aerosol phase increased at a rate of
~1.7x10"" " molm~3s~" between 13:30 and 15:30 LT. During this time, the relative hu-
midity was ~50%, and we used 8.0x10™* g H20/m3 air as a general estimate of liquid
water content in the ground-level air mass. Considering the aerosols in PRD region
was generally acidic (M.-Q. Huo, 2008, personal communication, Peking University),
we estimate the pH of the aerosols to be 4~5. On the basis of the average mea-
sured concentrations, with 1.0x10” molecule cm™ for OH, 6.5 ppbv for SO,, 2.8 ppbv
for H,O, and 50 ppbv for Og, the sulfate production rate is 1.4x107 2 molm™s™" in
the aqueous phase (using Egs. 19 and 20) and 3.5x10 "> moim™3s7" in the gas
phase (using Eq. 16), resulting in a combined sulfate production in both phases of
~4.9x10""2molm~3s~'. This estimated sulfate production is much smaller than the
measured value of 1.7x10" " molm™ 3’1, which indicates that other processes are
responsible for the missed source of sulfate. It is worth noting that the calculated
production of sulfate mentioned above includes only the production in the gas phase
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and in the aqueous bulk of droplets. The heterogeneous chemistry on the surface
of droplets and aerosols is potentially important (Li et al., 2006, 2007; Ammann and
Pdschl, 2007; Poschl et al., 2007; Chen et al., 2008), but it is not taken into account in
the above estimation. Jayne et al. (1990) observed that the uptake of SO, into water
droplets was faster than predicted on the basis of the known kinetics in bulk solution,
and they suggested that a surface complex was formed between SO, and H,O at the
interface. Vacha et al. (2004) suggested that the concentration of H,O, is increased
in the interfacial region by ~50% compared to the bulk. Chung et al. (2005) pointed
out that salts containing ammonium ions were found to increase the solubility of H,O,
by up to a factor of two compared to pure water. Hasson and Paulson (2003) found
that the concentration of H,O, within aerosols was of the order of 107°M, which is
one order of magnitude higher than the expected concentration based on the solubility
of H,O, in liquid water (~1 x1074 M). Moreover, Chen et al. (2008) recommended that
the interfacial reaction should be taken into account in the generalized aqueous phase
especially for a rapid reaction. Combining all these intriguing hints with our estimation,
we suggest that the surface heterogeneous phase reaction, here, the heterogeneous
reaction of SO, with H,O, might make a substantial contribution to sulfate production.
Clearly, the mechanism, kinetics parameters and yield of sulfate formation regarding
the heterogeneous reactions need further investigation.

Recent studies have revealed that the enhanced acidity of the aerosol can cat-
alyze particle-phase heterogeneous reactions of atmospheric organic carbonyl species
(Jang et al., 2002, 2003; linuma et al., 2004). The reactions of SO, with hydroperoxides
produce sulfate, and provide hydrogen ions continuously for heterogeneous reaction
systems.

3.5.2 Contribution to the formation of secondary organic aerosol (SOA) in aerosols

SOA formed through oxidation of atmospheric VOC contributes to the global aerosol
burden through both biogenic and anthropogenic precursors. The biogenic fraction of
SOA contributes the most, with estimates varying between 8 Tg yr'1 and 40Tg yr'1
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(Penner et al., 2001). Recent laboratory studies have revealed that acid-catalyzed
multiphase reaction of isoprene and its gas-phase oxidation product with hydrogen
peroxide lead to the formation of SOA (Claeys et al., 2004; Boge et al., 2006; Kroll et al.,
2006). This new route may explain the formation of water-soluble organic compounds
(WSOC), which include hydroxyl and/or carboxyl functional groups and represent a
considerable fraction of the SOA (Saxena and Hildemann, 1996).

Some evidence from the PRIDE-PRD’06 study indicates that a negative correlation
might exist between the observed hydroperoxides and the concentration of WSOC.
Figure 8 shows the measured concentrations of H,O, and WSOC, and it can be seen
that the diurnal variations of the two kinds of species are generally opposite.

It is generally accepted that the formation of SOA from biogenic hydrocarbons emit-
ted by terrestrial vegetation is via gas-phase photochemical reactions followed by gas-
to-particle partitioning (Seinfeld and Pandis, 1998). In the atmosphere, hydroperoxides
and WSOC are competitive in their formation reactions, involving the intermediates
R{R,COO and HO, radicals. Additionally, WSOC may be produced by multiphase
acid-catalyzed oxidation with hydrogen peroxides as reported (Claeys et al., 2004;
Boge et al., 2006; Kroll et al., 2006). Thus, a negative correlation of atmospheric
hydrogen peroxide with aerosol-phase WSOC can be expected to some extent. In
fact, the laboratory study revealed that the aqueous-phase ozonolysis of isoprene and
its gas-phase oxidation product may serve as a potentially important route for the for-
mation of oxidants, including H,O, (Chen et al., 2008). The field evidence indicated
that the sampled particles are capable of generating H,O, in aqueous solution (Arel-
lanes et al., 2006). Although it is difficult to distinguish quantitatively the contribution of
gas-phase H,0O, and H,O, generated in aqueous phase, our measurements provide
evidence that atmospheric H,O, contributes substantially to the formation of WSOC
and a negative correlation might exist between the two kinds of species, as shown in
Fig. 8.

In addition to H,O,, organic hydroperoxides, especially HMHP and MHP, may con-
tribute substantially to the formation of WSOC. As mentioned above, HMHP can de-
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compose to H,O, and formaldehyde in the aqueous phase (O’Sullivan et al., 1996;
Chen et al., 2008), which can subsequently participate in the formation of WSOC in
the form of H,O,. It has been shown that the concentrations of H,O, and MHP are
similar in many parts of the atmosphere (Reeves and Penkett, 2003). Although the
Henry’s Law constant of MHP in pure water is much lower than that of H,O,, the role
of MHP in the atmospheric aqueous phase may be much more important than that
estimated by its Henry’s Law constant in pure water. It is worth noting that formalde-
hyde was found in the aerosol at concentrations 1000-fold higher than the equilibrium
concentration calculated only from its gas-phase formaldehyde and aqueous aerosol
(Klippel and Warneck, 1978). This unexpected partitioning may be because formalde-
hyde in the aqueous aerosol is complexed with some soluble species (Facchini et al.,
1992). The Henry’s Law constant of formaldehyde obtained in this case is usually
called its effective Henry’s Law constant. However, to our knowledge, a similar study
for enhanced solubility of MHP in the aqueous phase has not been reported. Con-
sidering the potential importance of MHP in the aqueous-phase reaction, its effective
Henry’s Law constant in solutions regarding real atmospheric conditions needs further
study.

In summary, hydroperoxides play an important role in the formation of secondary sul-
fate and organic aerosols. First, hydroperoxides oxidize SO, into sulfate aerosols and
simultaneously produce hydrogen ions. Second, with the increase of hydrogen ions
derived from the above reaction, hydroperoxides will effectively oxidize organic com-
pounds into WSOC by acid-catalyzed heterogeneous reactions. Third, the formation of
WSOC will increase the hygroscopicity of aerosols, which in turn results in an increase
of SO, oxidation by increasing the aqueous phase. Therefore, hydroperoxides serve
as an important link between sulfate and organic aerosols. Such a link needs further
study and should be considered in current atmospheric models.
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4 Conclusions

Atmospheric H,O, and organic hydroperoxides were measured for 13 days during
the PRIDE-PRD’06 campaign at Backgarden, a rural site located 48km north of
Guangzhou. H,O, and MHP were the dominant hydroperoxides present in the air
with a maximum mixing ratio of 4.6 ppbv for H,O, and 0.8 ppbv for MHP. BHMP, PAA,
HMHP, 1-HEHP and EHP were detected occasionally. H,O, exhibited the maximum
mixing ratio mainly between 12:00 and 18:00 LT on sunny days and low values at night
and in the morning. Sometimes a second peak was observed during the evening
(20:00-02:00 LT), which might be produced by the ozonolysis of alkenes. The diur-
nal variation of MHP was generally consistent with that of H,O, but less pronounced.
The estimation for the H,O, formation rate from HO, recombination indicates that in
the morning most of the H,O, was formed through local photochemical activity, and
vertical mixing might be a source. It was noteworthy that high levels of hydroperox-
ides were found in polluted air with a high mixing ratio of VOC and CO. The high level
of HO, radicals and the low level of NO detected simultaneously in this region in the
day may effectively support the production of hydroperoxides. High concentrations of
H,O, and MHP were detected in samples of rain collected during a shower when a
strong typhoon passed through the observation site. The estimation using Henry’s
Law indicates that a considerably high mixing ratio of MHP resided above the bound-
ary layer and might further influence the redistribution of HO, and RO, radicals in the
PRD region. Evidence was found that hydroperoxides, in particular H,O,, contributed
considerably to the formation of aerosol-phase sulfate via the aqueous-phase oxida-
tion, and heterogeneous reactions may contribute substantially to the concentration of
sulfate measured at the site. Furthermore, the results suggested that hydroperoxides
may contribute substantially to the formation of WSOC, as indicated by the fact that
their diurnal variations exhibited a negative correlation. This provides evidence gath-
ered in the field to support the importance of hydroperoxides in the formation of SOA
found in laboratory studies. We suggest that hydroperoxides serve as an important
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link between sulfate and organic aerosols. This link needs further study and should be
considered in current atmospheric models.
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Fig. 1. HPLC chromatogram of a mixture of hydroperoxides showing separation and retention

times.
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