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Abstract

An intercomparison of different radiometric techniques measuring atmospheric pho-

tolysis frequencies j (NO2), j (HCHO) and j (O1
D) was carried out in a two-week field

campaign in June 2005 at Jülich, Germany. Three double-monochromator based spec-

troradiometers (DM-SR), three single-monochromator based spectroradiometers with5

diode-array detectors (SM-SR) and seventeen filter radiometers (FR) (ten j (NO2)-FR,

seven j (O1
D)-FR) took part in this comparison. For j (NO2), all spectroradiometer re-

sults agreed within ±3%. For j (HCHO), agreement was slightly poorer between −8%

and +4% of the DM-SR reference result. For the SM-SR deviations were explained by

poorer spectral resolutions and lower accuracies caused by decreased sensitivities of10

the photodiode arrays in a wavelength range below 350 nm. For j (O1
D), the results

were more complex within +8% and −4% with increasing deviations towards larger so-

lar zenith angles for the SM-SR. The direction and the magnitude of the deviations were

dependent on the technique of background determination. All j (NO2)-FR showed good

linearity with single calibration factors being sufficient to convert from output voltages15

to j (NO2). Measurements were feasible until sunset and comparison with previous

calibrations showed good long-term stability. For the j (O1
D)-FR, conversion from out-

put voltages to j (O1
D) needed calibration factors and correction functions considering

the influences of total ozone column and altitude of the sun. All instruments showed

good linearity at photolysis frequencies exceeding about 10% of maximum values. At20

larger solar zenith angles, the agreement was non-uniform with deviations explainable

by insufficient correction functions. Comparison with previous calibrations for some

j (O1
D)-FR indicated drifts of calibration factors.

1 Introduction

ACCENT (Atmospheric Composition Change – The European Network of Excellence)25

is a European joint research programme (http://www.accent-network.org/). An integra-
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tion task within this project was the quality assurance of measurement techniques used

in field campaigns. The current work was part of this activity and concerned radiometric

measurements of atmospheric photolysis frequencies.

Atmospheric chemistry is determined by the formation of highly reactive radical

species in photolysis processes. These radicals initiate complex chain reactions, e.g.5

the degradation of many trace gases released into the atmosphere by anthropogenic,

biogenic and geological processes (e.g. Ehhalt, 1999; Jenkin and Clemitshaw, 2000).

Photolysis frequencies are first-order rate constants quantifying the rate of photolysis

processes, i.e. of primary radical production. It is therefore important to perform re-

liable measurements of photolysis frequencies with accurate techniques, in order to10

improve our current knowledge concerning the atmospheric photochemistry.

A summary of available techniques of photolysis frequency measurements in the at-

mosphere was given in recent reviews by Clemitshaw (2004) and Hofzumahaus (2006).

Although there are absolute chemical methods available (chemical actinometry), ra-

diometric measurement techniques are most common for reasons of convenience and15

versatility. The radiometric approach of photolysis frequency determinations is based

on measurements of solar actinic radiation either spectrally resolved with spectrora-

diometers or integrated over selected wavelength ranges with filter radiometers. The

relationship for a photolysis reaction

A + hν → B (+ products) (1)20

is given by the following equation:

j (A → B) =

∫
λ
Fλ σA φB dλ (2)

The notation j (A→B) is often abbreviated j (A) or j (B) dependent on context. j (NO2)

and j (O1
D) are well known examples for these abbreviations (see Eqs. (3) and (5)

below). Fλ is the spectral actinic photon flux density (denoted spectral actinic flux in the25

following), σA is the absorption cross section of the reactant molecule A, and φB is the
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quantum yield of the photo-product B. These quantities are dependent on wavelength

λ and consequently the integrations in Eq. (2) are covering wavelength ranges where

the product FλσAφB 6=0. In the troposphere photolysis processes mainly proceed in a

wavelength range 290 nm≤λ≤420 nm. Important exceptions are the photolysis of NO3

(420–640 nm) and the photolysis of O3 in the Chappius band (440–850 nm).5

For major atmospheric photolysis processes the molecular parameters σA and φB

are known from laboratory work. Significant uncertainties still exist for less abundant

compounds, e.g. for many complex carbonyl compounds formed as intermediates in

atmospheric VOC degradations. The accuracy of photolysis frequency measurements

based on Eq. (2) depends on both accurate spectral actinic flux and molecular param-10

eters. However, the uncertainties of the molecular parameters are not the scope of

the present work because they can only be improved by further laboratory work. The

question addressed in this work was if based on a common set of molecular parame-

ters consistent results were obtained for selected photolysis frequencies using different

instruments and measurement techniques.15

Technically, the radiometric measurement of actinic flux requires receiver optics

reproducing the geometric reception characteristics of molecules in the gas-phase,

namely an angle-independent sensitivity over a 2π (or 4π) sr solid angle field of view

(Hofzumahaus, 2006). This can be achieved by frosted quartz or teflon domes com-

bined with horizontal shadow rings limiting the field of view to one hemisphere. The20

collected radiation is then guided towards dispersive elements dependent on technique

as described briefly in the following.

Spectroradiometers (SR) measure Fλ as a function of wavelength. Spectral reso-

lutions of ≈1 nm are generally sufficient for measurements aiming at photolysis fre-

quencies. Spectroradiometry is the most versatile approach because any photolysis25

frequency can be calculated from the Fλ spectra if σA and φB in Eq. (2) are known.

There are two principal methods of spectroradiometry utilised for atmospheric mea-

surements. The first method uses double monochromators for wavelength separation

and successive measurements with single detectors (e.g. photomultipliers) upon scan-
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ning the wavelength. This concept will be denoted DM-SR in the following and is excel-

lent for stray light suppression which is important in the UV-B range (e.g. Shetter and

Müller, 1999; Hofzumahaus et al., 1999). Drawbacks are the comparatively long time

periods to complete the wavelength scans (≥30 s) and the use of motor-driven optical

components which may cause stability problems under field measurement conditions.5

The second method uses single monochromators and detector arrays (e.g. photodiode

arrays) for simultaneous measurements covering the whole range of relevant wave-

lengths. This concept will be denoted SM-SR in the following and has the advantage

of high time-resolution and stability because no movable part are involved. These are

important requirements for example for aircraft measurements (e.g. Jäckel et al., 2005;10

Stark et al., 2007). Drawbacks are insufficient stray-light suppression and cross-talk

within the detector arrays limiting accuracy in the UV-B (e.g. Kanaya et al., 2003; Ed-

wards and Monks, 2003; Jäckel et al., 2006). With both types of spectroradiometers

Fλ measurements can be made on an absolute scale because calibrations are feasi-

ble with irradiance standards that can be traced to national standards. However, in15

this procedure the properties of the actinic receiver optics must be taken into account

(Hofzumahaus et al., 1999). Moreover, actinic flux under atmospheric conditions can

be greater by two orders of magnitude compared with typical calibration conditions in

the laboratory, i.e. there are high demands on linearity and dynamic range.

Filter radiometers (FR) use combinations of optical filters and detectors instead of20

monochromators to measure Fλ integrated over expanded wavelength ranges. The

relative spectral sensitivities are chosen to closely match those of the products σAφB in

Eq. (2) for a selected photolysis reaction. Ideally, the FR outputs are then proportional

to the corresponding photolysis frequencies and absolute calibrations can be obtained

from in-field comparisons with reference instruments, e.g. spectroradiometers.25

From the point of view of atmospheric chemistry, nitrogen dioxide photolysis and

ozone photolysis in the Huggins bands are of particular importance because they form

prominent species in secondary reactions, namely ozone:

NO2 + hν(λ ≤ 420 nm) −→ O(3P) + NO (3)
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O(3P) + O2 + M −→ O3 + M (4)

and OH radicals:

O3 + hν(λ ≤ 340 nm) −→ O(1D) + O2 (5)

O(1D) + H2O −→ 2 OH (6)

Consequently, filter radiometers were designed to specifically measure the photolysis5

frequencies j (NO2) (Reaction 3) or j (O1
D) (Reaction 5) (Junkermann et al., 1989; Volz-

Thomas et al., 1996). The main advantage of filter radiometers is that the instruments

are light-weight and easy to handle making them ideal for routine measurements with

high time resolution (1 s). The disadvantage of filter radiometers is that only photolysis

frequencies of a single reaction are obtained with limited potential to deduce other10

photolysis frequencies.

The purpose of this work was to bring together various types of instruments from

European groups for an in-field comparison of photolysis frequency measurements.

There were several objectives. Firstly, to compare independently calibrated spectro-

radiometers under atmospheric conditions. Secondly, to assess the performance of15

SM-SR in particular for measurements in the UV-B, i.e. for j (O1
D), by comparison with

a DM-SR reference. Thirdly, to provide a common spectroradiometer reference for the

calibration of filter radiometers.

Besides j (O1
D) and j (NO2) in this work we will examine the atmospherically im-

portant photolysis frequencies j (HCHO)m and j (HCHO)r of methanal (formaldehyde)20

photolysis:

HCHO + hν(λ ≤ 355 nm) −→ H2 + CO (7)

HCHO + hν(λ ≤ 335 nm) −→ H + HCO (8)

The indices m and r stand for the molecular (Reaction 7) and the radical channel

(Reaction 8), respectively. (Reaction 7) is the main source of atmospheric H2 while25

(Reaction 8) is an important primary source of HOx because both radical fragments
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quantitatively form HO2 under tropospheric conditions. Spectrally HCHO photolysis

falls between those of O3 and NO2. Nevertheless, the measurement of HCHO pho-

tolysis frequencies with spectroradiometers is difficult because the HCHO absorption

spectrum is composed of sharp peaks requiring measurements with sufficient spectral

resolutions. Other photolysis frequencies will not be addressed specifically but this5

does not imply they are unimportant.

2 Experimental

Table 1 gives an overview of participating groups and instruments. Most groups oper-

ated one filter radiometer (University of Leeds (ULE), Imperial College London (ICL),

Paul Scherrer Institute (PSI) and Metcon GmbH (MET)), two similar filter radiometers10

(Max Planck Institute for Chemistry (MPIC)) or a pair of different filter radiometers (Uni-

versity of Crete (UCR)). Moreover, except for MET these groups had no independent

means of calibration with a reference instrument. University of Heidelberg (IUP) oper-

ated a DM-SR. Deutscher Wetterdienst (DWD) and University of Leicester (ULI) oper-

ated both SM-SR and pairs of different FR. These two groups also had own irradiance15

standards which were used for independent calibrations. Forschungszentrum Jülich

(FZJ) provided the DM-SR reference and also operated SM-SR and pairs of different

FR. In the following subsections the different instrument types will be briefly introduced

and technical aspects of the intercomparison will be addressed. The reference instru-

ment will be described in more detail.20

2.1 DM-SR and reference instrument

A DM-SR by FZJ was selected as a reference (FZJ-SR1). The instrument was assem-

bled from a double-monochromator (Bentham, DTM 300), a 10 m quartz fibre, a 30 mm

diameter quartz receiver (Metcon GmbH), and a 350 mm horizontal shadow ring. Radi-

ation was detected with a UV sensitive photomultiplier (EMI, 9250QB). The setup was25
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described in detail by Hofzumahaus et al. (1999). Here we give additional or updated

information on this instrument to justify its use as a reference.

Spectral sensitivity calibration was made with a PTB traceable 1000 W irradiance

standard (Gigahertz-Optik, BN-9101). 45 W secondary standards (Optronic) were

used to check the stability of the instrument during the campaign which remained5

stable within 2% independent of wavelength. Wavelength offsets at positions (air)

296.728 nm, 334.148 nm and 407.784 nm were checked regularly using a low-pressure

mercury lamp (Oriel, 6035). In five of these checks between 25 May and 14 June 2005

minimum and maximum offsets of −0.02 nm and +0.03 nm were found. For a given

wavelength these offsets were stable within ±0.02 nm. This stability was achieved10

by temperature-stabilising the double-monochromator within about ±1 K. Wavelengths

steps and spectral resolution (FWHM, full width at half maximum) were set to 1 nm. A

scanning range 280–420 nm was selected resulting in typical scanning times of about

90 s. Total measurement times for a spectrum including background determinations

were about 110 s.15

The angular response properties of the optical receiver of FZJ-SR1 were tested in

the laboratory as described by Hofzumahaus et al. (1999). Generally, these properties

were different for each optical receiver and optimised by thorough alignments of inter-

nal parts. The upper panels of Fig. 1 show the relative response Zp as a function of

polar angle (ϑ) for three wavelengths within the scanning range. In the lower panels20

of the same figure these data were multiplied by sin(ϑ) to demonstrate the effects of

the Zp functions on actinic flux reception assuming a hypothetical isotropic sky radi-

ance distribution. For comparison the black lines in both panels illustrate the ideal be-

haviour. Neglecting up-welling radiation, the ratios ZH of the integrals (measured/ideal)

under the Zp sin(θ) curves in a range ϑ≤90
◦

quantify the deviation caused by the non-25

ideal angular response characteristics (Hofzumahaus et al., 1999). Figure 2 shows the

corresponding correction factors 1/ZH as a functions of wavelength. Evidently these

factors were close to unity and independent of wavelength in a range below 450 nm

and therefore no correction was applied. Of course, under atmospheric conditions dif-
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fuse sky radiation was not isotropic and the contribution from direct sun was scaled by

the receiver by Zp(SZA) (SZA = solar zenith angle). Nevertheless, the deviations were

estimated to remain within 2% under typical conditions. Numerical tests showed that

the correction factors exhibited little dependence on the angular radiance distribution.

Moreover, the contribution of direct sun generally diminishes with increasing SZA.5

Total accuracy of the spectral actinic flux measurements of the reference instrument

was estimated 5–7% considering the accuracy of the irradiance standard, the calibra-

tion procedure and the uncertainties regarding the angular response properties of the

optical receiver. FZJ-SR1 participated in two previous international intercomparison

campaigns for spectral actinic flux measurements, namely IPMMI (Bais et al., 2003)10

and INSPECTRO (Thiel et al., 2008). In these comparisons agreement within 5–10%

was obtained with other absolutely calibrated spectroradiometers consistent with ac-

curacy estimates.

A second DM-SR of FZJ (FZJ-SR2) was operative which measured with two receiver

optics simultaneously. The set-up was similar to the reference instrument but the to-15

tal slit height of the double monochromator was used for two separate optical paths.

One channel measured the total spectral actinic flux, the other measured the contribu-

tion from diffuse sky radiation by obstructing direct sun with an additional shadow ring.

More details on this technique can be found elsewhere (Bohn and Zilken, 2005). In the

present work the measurement of diffuse sky radiation merely served as a charaterisa-20

tion of ambient conditions regarding the presence and contribution of direct sun. The

calibration procedure, scanning scheme and wavelength stability were similar to the

reference instrument. Angular response characteristics were close to those shown in

Fig. 1. A slightly poorer performance towards large polar angles was compensated by

a correction factor 1/ZH=1.03 for the receiver measuring the total actinic flux. Because25

of co-channel operation measurement times of FZJ-SR2 were increased to about 135 s

per spectrum.

The DM-SR of University of Heidelberg (IUP-SR) was assembled from a double-

monochromator (Bentham, DMc 150), a 3 m quartz fibre, a hemispherical PTFE (teflon)
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receiver (10 mm diameter), and a 100 mm horizontal shadow ring. Radiation detection

was made by a cooled (263 K) photomultiplier tube (Bentham, DH-10-Te). A scanning

range 250–600 nm was used and a FWHM of 1 nm. Wavelength steps were 5 nm in

the range 250–280 nm (background measurement), 1 nm in the range 280–450 nm and

5 nm in the range 450–600 nm. This scheme resulted in scanning times of about 6 min.5

Wavelength calibration was performed with a low pressure mercury lamp and wave-

length offsets were considered in the data analysis. Spectral sensitivity calibration was

made directly after the intercomparison with the same irradiance standard as used for

the reference instrument. As for the other SR described above, an accuracy of 5% was

estimated for this calibration. However, the angular response properties of the teflon10

receiver optics of IUP-SR were found to be unsuitable with sensitivities decreasing

significantly towards larger polar angles. As a first approximation this was compen-

sated by a correction factor 1/ZH=1.52 in the data analysis again obtained assuming

an isotropic angular distribution of sky radiance. The additional uncertainty associated

with this correction was estimated 0–20% dependent on conditions, i.e. presence or15

absence of direct sun, SZA and wavelength range.

A further, more general problem of teflon receivers should be mentioned here. A

phase transition of the PTFE material at around 292 K was reported to change the

transmittances of teflon diffusers by about 3% (Ylianttila and Schreder, 2005). This

may have affected spectral sensitivities of IUP-SR. Because this potential problem was20

unnoticed at the time of the campaign temperature data were not recorded during

measurements and calibrations. We therefore estimate a further 5% uncertainty for

the measurements of IUP-SR.

2.2 SM-SR

The SM-SR by University of Leicester (ULI-SR) was described in detail by Edwards25

and Monks (2003) and Monks et al. (2004). Briefly, the instrument was composed of

a quartz receiver as described above, a ceramic single monochromator (Zeiss) and a

512-pixel photodiode array (Hamamatsu, S3904). The set-up was developed by Met-

10311



ACPD

8, 10301–10352, 2008

ACCENT photolysis

frequencies

B. Bohn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

con GmbH and contained in a water-tight aluminium housing for outdoor operation.

The ceramic housing of the monochromator ensured excellent wavelength stability

with regard to temperature variations specified as 5×10
−4

nm K
−1

. With a step-size

of 0.83 nm/pixel measurements were feasible between 280 nm and 700 nm. However,

data analysis was confined to a wavelength range 280–450 nm. A 1000 W NIST trace-5

able irradiance standard (Oriel) was used for calibration under laboratory conditions.

The accuracy of the calibration was estimated 8% in the UV-A and 9% in the UV-B

range, including uncertainties associated with the quartz receiver but not considering

any stray-light effects (Edwards and Monks, 2003). Wavelength offsets and slit func-

tions were obtained using Na and Hg atomic line lamps. Atmospheric measurements10

were made with a fixed integration time of 1 s. Spectra were then averaged over 1 min

periods. Background signals (electronic and stray-light) were determined in a range

285–290 nm where atmospheric radiation at ground level was negligible. These back-

ground signals were subtracted at all wavelengths.

DWD-SR and FZJ-SR3 were similar in construction representing slightly modified15

versions of the ULI-SR instrument mainly regarding the housings provided by Metcon

GmbH. FWHM and wavelength offsets were obtained with mercury lamps. FWHM of

DWD-SR was about 2.3 nm (manufacturer) with wavelength offsets ranging between

0.06 nm at 297 nm and 0.01 nm at 546 nm. The FWHM of FZJ-SR3 was about 1.7 nm

and wavelength offsets ranged between −0.01 nm at 297 nm and −0.05 nm at 546 nm.20

Calibrations were made with the same irradiance standard as for the reference instru-

ment (FZJ) and with a further NIST traceable 1000 W standard (Optronics Laborato-

ries) (DWD). The calibration procedures were performed in two steps accounting for

the low sensitivities of the diode arrays in the UV range and the low outputs of the

calibration lamps. Calibration measurements were made at standard (70 cm) and re-25

duced (≈30 cm) distances between the lamps and the optical receivers. At the shorter

distances spectral calibrations were obtained on a relative scale but with improved

signal-to-noise ratios. The corresponding relative sensitivities were then transferred

to the regular distance by scaling factors from a wavelength range ≥400 nm where
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good signal-to-noise ratios were obtained at both distances. The accuracy of these

calibrations were estimated 5% above 400 nm and 6–10% in the UV range, generally

decreasing with decreasing wavelength for DWD-SR and FZJ-SR3.

Calibrations also included measurements with and without cut-off filters at 320 nm

(Schott, WG320) to quantify the level of stray-light in the range 280–320 nm and to5

investigate the cross-talk within the diode arrays. The latter typically led to slightly

increasing signals upon approaching the cut-off wavelength of the filters in a range

where the transmittance of the filters was negligible. Atmospheric spectra were there-

fore treated as follows: After subtraction of electronic background obtained in the dark,

the derivative of the signal with wavelength was calculated averaging over 3–5 neigh-10

bouring pixels. A minimum positive gradient was then defined as significant marking

the actual onset of the atmospheric spectrum. At this wavelength the offset was de-

termined and subtracted at all wavelengths. Data from wavelengths below this starting

point were neglected.

Up to four different integration times between 0.5 s and 5 s were utilised to measure15

in different spectral ranges, e.g. 1 s in the UV-A and 5 s in the UV-B range, dependent

on conditions. Final spectra were then assembled to obtain maximum integration times

for all wavelengths without saturation. This resulted in typical measurement times of

about 12 s (DWD-SR, four integration times) and 8 s (FZJ-SR3, two integration times)

for a single spectrum. These data were saved without further averaging.20

2.3 j (NO2)-FR and j (O1
D)-FR

The instrumental setup and properties of j (NO2)-FR and j (O1
D)-FR were described

in detail by Volz-Thomas et al. (1996) and Junkermann et al. (1989), respectively.

Briefly 30 mm diameter quartz receivers with 140 mm horizontal shadow rings were

used for 2π sr radiation collection. For the j (NO2)-FR, combinations of bandpass and25

cut-off filters (Schott) were used for the wavelength separation and phototubes (Hama-

matsu, R840) for radiation detection. j (O1
D)-FR used narrow-band interference filters

(λmax≈300 nm, FWHM≈10 nm, Schott) and solar-blind photomultipliers (Hamamatsu,

10313



ACPD

8, 10301–10352, 2008

ACCENT photolysis

frequencies

B. Bohn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

R759). These components were assembled in water-tight aluminium cylinders for out-

door operation. The cylinders were equipped with cells for drying agents to ensure

proper operation of optical and electronic components. The instruments of this cam-

paign represented various versions of commercially available setups by Metcon GmbH.

High voltages of the j (O1
D)-FR were checked before and after the campaign. The final5

outputs were analogue voltages in a 0–10 V range that could be recorded continuously.

j (NO2)-FR were available in the form of 2π sr instruments and 4π sr instruments with

two opposite 2π sr receiver optics. After half of the campaign the latter instruments

were rotated by 180
◦

to obtain calibrations for both sides.

2.4 Campaign location and conditions10

The intercomparison was conducted on a roof platform at Forschungszentrum Jülich

(50.91 N, 6.41 E, 110 m a.s.l.) during the period 1 June–12 June 2005. The campaign

period was selected to cover the maximum range of solar zenith angles possible for this

latitude, i.e. SZA≥27
◦
. The platform provided virtually full view of the upper hemisphere

(≈97%). Figure 3 shows a photograph of the platform taken during the campaign. The15

roof underneath the platform was covered with black roofing fabric and the building

was mainly surrounded by trees exhibiting low reflectivity in the UV. This limited local

up-welling actinic flux. Mutual influence of instruments mounted at the same level at

distances >25 cm was estimated <0.3%. Underneath the platform a laboratory was

arranged housing DM-SR, FR power supplies, data loggers and control computers.20

In Fig. 4 measurements of global shortwave radiation (λ≤3µm) during the campaign

period were plotted. These data were obtained with a pyranometer (CM7, Kipp-Zonen)

and correspond to the solar radiant energy flux density incident at a horizontal surface

(solar irradiance). The data represent a fundamental meteorological quantity used here

to characterise the measurement conditions. Solar irradiances showed strong variabil-25

ity caused by clouds. Unfortunately, clear-sky conditions were rare during the measure-

ment period. For comparison clear-sky data observed on 12 June 2006 were plotted

in Fig. 4. This comparison shows that occasionally solar irradiances were significantly
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greater than under clear-sky indicating broken-cloud conditions where reflections on

clouds led to enhanced irradiances. On the other hand clouds effectively reduced solar

irradiances when the sun’s disc was blocked. Overall the campaign period apparently

offered the desired dynamic range of natural insolation conditions albeit superposed

by rapid changes.5

2.5 Timing and data handling

Recording of analog FR data was made with a common data logger (Disys, PCI-13)

provided by FZJ except for the two instruments by ULI for which 1 min averages were

recorded separately. For all the other FR data, recording was made with a time res-

olution of 1 s and 5 s averages were saved. The clocks of the computers controlling10

the FZJ data logger and FZJ spectroradiometers were network-synchronised. After

initial synchronisation the DWD-SR computer clock remained within 2 s compared to

FZJ. The drifting time-shifts of two further computer clocks (IUP, ULI) and that of the ULI

data logger were recorded on a daily basis and linearly interpolated after the campaign.

After correction synchronisation of clocks was estimated to be within 2 s.15

3 Results and discussion

3.1 Spectroradiometers

3.1.1 Calculation of photolysis frequencies and influence of FWHM

For the analysis of all spectroradiometer data the same absorption cross sections and

quantum yields from literature were used assuming a temperature of 298 K. For O320

absorption cross sections by Malicet et al. (1995) and O(
1
D) quantum yields by Mat-

sumi et al. (2002) were selected. For NO2 absorption cross sections by Merienne et al.

(1995) and quantum yields by Troe (2000) were used and for HCHO absorption cross
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sections by Meller and Moortgat (2000) and quantum yields recommended by Atkinson

et al. (2004).

Technically photolysis frequencies were obtained by summation of the products

Fλσφ at the measurement wavelengths λi and multiplication by the step-size ∆λ:

j (A → B) ≈
∑
i

Fλ(λi ) σA(λi ) φB(λi ) ∆λ (9)5

Absorption cross sections were available with higher spectral resolutions compared to

the Fλ measurements and quantum yields. Two methods were tested to deal with the

different resolutions. In method 1 data were forced to a common wavelength grid with

∆λ=0.1 nm by averaging σ and linearly interpolating φ and Fλ (Hofzumahaus et al.,

1999). Alternatively, the experimental ∆λ of 1.0 nm (DM-SR) and 0.83 nm (SM-SR)10

were used and the molecular data were averaged over the FWHM of the instruments.

To find out if the FWHM or the method of calculation had an influence on photol-

ysis frequencies, an actinic flux reference spectrum with ∆λ and full width resolution

of 0.1 nm was calculated using a radiation transfer model (TUV 4.3 by S. Madronich,

http://cprm.acd.ucar.edu/Models/TUV/). A clear sky spectrum for 1 June 2005 was15

calculated for noon time conditions assuming TUV standard aerosol load and a NASA-

TOMS based ozone column of 340 DU. Because no absolute comparison with mea-

sured spectra was intended the choice of these parameters was considered secondary.

To reproduce the spectral resolutions of the instruments, Gaussian curves with the ex-

perimental FWHM were used to degrade the simulated high resolution spectrum. Pho-20

tolysis frequencies were calculated for the reference spectrum and the spectra with

the reduced resolutions using the two methods outlined above. The ratios j/jref of the

photolysis frequencies are listed in Table 2. The results show that for j (NO2) no signif-

icant deviations (>1%) were found. For the other photolysis frequencies both methods

provided similar results within ±2% of the reference calculation at a FWHM of 1 nm.25

At a FWHM of 2 nm method 1 gave results within ±3% of the reference while method

2 produced slightly improved results for j (O1
D) (+2%) and slightly poorer results for

j (HCHO) (−4%). Overall differences between method 1 and method 2 were minor
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and no recommendation was made. Considering the FWHM of DM-SR and SM-SR in

this work, differences on the order 2% for j (HCHO) were expected caused by spectral

resolution differences. The results obtained here with method 1 were consistent with

previous conclusions by Hofzumahaus et al. (1999) who used a similar approach.

3.1.2 Campaign overview5

Figures 5 and 6 show an overview of j (NO2) and j (O1
D) data obtained during the pe-

riod 1 June–12 June 2005. FZJ-SR2 data were selected for this overview because

this instrument also provided information on the presence and contribution of direct

sun. In accordance with the solar irradiances shown in Fig. 4, the photolysis frequen-

cies exhibited strong variability and rapidly changing contributions of direct sun. How-10

ever, compared with the solar irradiances the variations caused by clouds were less

pronounced in particular for j (O1
D). The values of j (NO2) and j (O1

D) represented

in good approximation the UV-A and UV-B range, respectively. Thus, on a relative

scale stronger Rayleigh scattering and absorption by stratospheric ozone expectedly

led to narrower diurnal shapes and lower contributions of direct sun for j (O1
D) than for15

j (NO2). j (HCHO)r and j (HCHO)m were not shown here because they exhibited relative

diurnal variations between those of Figs. 5 and 6.

3.1.3 FZJ-SR2

Figure 7 compares FZJ-SR2 data with those of the reference instrument. Correlation

plots (left) and ratios as a function of SZA (right) were plotted. The synchronised data20

for these plots were obtained by linear interpolation of the reference instrument data

to the FZJ-SR2 time axis. In this procedure the measurement times for both instru-

ments were defined by the centres of the integrals in Eq. (2). The FZJ-SR2 time axis

was selected for interpolation because the reference data had a higher time resolu-

tion. The resulting scatter was mainly caused by the combined influences of clouds25

and the differences in the scanning times of the instruments, i.e. by the imperfect syn-
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chronisation of the scanning schemes rather than instrument precisions. This scatter

was considered arbitrary but dependent on conditions (SZA, cloud movement, etc.).

In previous comparisons of the instruments FZJ-SR1 and FZJ-SR2 with synchronised

scanning schemes (unpublished results) lower scatter was observed independent of

external conditions confirming this interpretation.5

Linear regressions of the data in the correlation plots resulted in slopes close to

unity within 2% for all photolysis frequencies. In Table 3 the corresponding results

were listed. Because scatter was dominated by synchronisation effects measurement

precisions were not considered in the regressions. Exchanging x and y gave slopes

within 0.5% of the inverse slopes listed in Table 3. Thus, neglecting instrument errors10

in the regressions did not seem to produce any systematic differences.

The plots on the right hand side of Fig. 7 indicated that the ratios of the photolysis

frequencies were independent of SZA. In contrast to the correlation plots this repre-

sentation equally weighted all data independent of the photolysis frequency values.

Any systematic deviation towards large SZA would have been apparent in these plots.15

In Table 3 mean ratios and standard deviations were listed for the different photolysis

frequencies as an alternative measure for the agreement of the instruments. For these

calculations data were selected where photolysis frequencies were greater than 5%

of the maximum values for j (NO2) and j (HCHO), and greater than 10% of maximum

values for j (O1
D). These limits were chosen because they seemed applicable for all20

instruments discussed in the following. In Fig. 7 the corresponding data points were

color-coded. The mean ratios were in agreement with the slopes from the linear re-

gressions within 1%. The standard deviations of the mean ratios mainly reflected the

magnitude of the scatter produced by the synchronisation effects. Overall the agree-

ment of FZJ-SR2 and FZJ-SR1 was within the estimated uncertainties regarding the25

optical receiver properties (≈2%).
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3.1.4 IUP-SR

Figure 8 shows a comparison of IUP-SR and reference data in the same representa-

tions as Fig. 7. Synchronisation was made by interpolation of the reference instrument

data to the IUP-SR measurement times. Caused by the increased scanning times of

IUP-SR (6 min) the resulting scatter was strongly increased. Linear regressions yielded5

slopes close to unity with deviations between 2% for j (NO2) and 8% for j (O1
D) (Ta-

ble 3). The mean ratios of the photolysis frequencies in Table 3 reflect corresponding

agreements in reasonable accordance with the regression slopes.

Because the same irradiance standard was used for calibration of IUP-SR and FZJ-

SR1, systematic deviations were most likely caused by the imperfections of the teflon10

receiver of IUP-SR. The plots of the ratios of photolysis frequencies in Fig. 8 indicated

slight dependencies on SZA with minima close to 60
◦
. Qualitatively this behaviour was

explained by the properties of the teflon receiver of IUP-SR. At SZA≈60
◦

the applied

correction factor and Zp compensated each other, i.e. Zp/ZH≈1. Thus direct sun was

treated correctly at this SZA while at smaller SZA the correction overcompensated the15

imperfections of the receiver for direct sun. Occasionally this led to greater values at

smaller SZA. Under overcast conditions the correction factor 1/ZH of 1.52 based on

the assumption of an isotropic radiance distribution may be too great by about 6% if

empirical distributions of sky radiance under overcast conditions are taken into account

(Grant and Heisler, 1997). Overall, given the uncertainties of the corrections account-20

ing for the deficiencies of the optical receiver the agreement was satisfactory.

3.1.5 ULI-SR

The comparsion of ULI-SR with FZJ-SR1 is shown in Fig. 9. The scatter was small

because the ULI-SR data were higher resolved (1 min averages) and were linearly

interpolated to the measurement times of the reference instrument. In Table 3 the25

results of the data analysis were summarised. For j (NO2) agreement of ULI-SR with

the reference was within 3%. Because calibration was made with a different irradiance
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standard this result was well within the accuracy estimates of both instruments. For

the HCHO photolysis frequencies the agreement was slightly poorer with deviations

of about −5% and −8% for j (HCHO)m and j (HCHO)r, respectively. These differences

were independent of SZA and partly (≈2%) explainable by the greater FWHM of ULI-

SR (see Sect. 3.1.1). The remaining differences mainly for j (HCHO)r were explained5

by the limited accuracy of the sensitivity of the instrument in the UV where both the

sensitivity of the photodiode arrays and the irradiance of the standard lamps strongly

decreased. These problems were accounted for by the greater error estimate for ULI-

SR in the UV-B range (9%) which covers the remaining about 6% difference.

For j (O1
D) there were significant deviations of about 15% at SZA≈60

◦
and 30% at10

SZA≈70
◦

which further increased towards larger SZA. Similar positive deviations were

recognised for the other photolysis frequencies albeit at SZA exceeding 90
◦

which was

considered irrelevant. The reason for these deviations probably was insufficient back-

ground and/or stray-light subtraction under the atmospheric measurement conditions.

Background was determined in a range 285–290 nm where no atmospheric radiation15

was expected. If stray-light and/or additional background (cross-talk) increased in the

range between 290 nm and the actual atmospheric cutoff wavelength this led to an

overestimation of radiation in this range. At larger SZA the j (O1
D) response to these

overestimations was extremely sensitive. However, the deviations were hardly visible

in the correlation plots in Fig. 9 because they affected times of the day where j (O1
D)20

was small. Deviations exceeding 20% were only observed at j (O1
D) below about

3×10
−6

s
−1

corresponding to about 10% of the maximum values. Photochemically the

impact of these deviations is probably minor.

3.1.6 DWD-SR

Figure 10 shows a comparison of DWD-SR and reference instrument data. Synchro-25

nisation was made by averaging the DWD-SR data (12 s time resolution) over the re-

spective scanning intervals of the reference instrument. For j (NO2) averaging windows

of 45 s were used corresponding to a wavelength range of about 335–410 nm covering
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the major fraction of the NO2 photolysis spectral range. For the other photolysis fre-

quencies 25 s averaging windows were used. As a result of the averaging the scatter

decreased further in comparison to the other SR discussed so far. In Table 3 the re-

sults of the data analysis were summarised. Regarding j (NO2) the result was again

excellent with an agreement within 1% although a third irradiance standard was used5

for calibration by DWD. The smaller standard deviation of the ratios reflected the higher

time resolution of the measurements further diminishing the cloud effects. Correspond-

ing agreement was found for the other photolysis frequencies with a maximum negative

3–4% deviation for j (HCHO)r. As explained above this was partly attributed to the lower

spectral resolution.10

The plots of the ratios as a function of SZA revealed systematic negative devia-

tions towards large SZA mainly for j (O1
D). The sporadic deviations at smaller SZA

also corresponded to low values of photolysis frequencies as indicated by the colors

in Fig. 10. The behaviour was opposite to that of ULI-SR and was explained by the

different method of background subtraction. A minimum gradient was defined to locate15

the onset wavelength of atmospheric radiation (Sect. 2.2). This led to an underesti-

mation of spectral actinic flux at lower wavelengths. Nevertheless the approach was

justified because apart from the direction, the deviations were smaller compared to the

overestimations resulting from constant background subtraction. Deviations exceeding

20% were only observed at j (O1
D) below about 1×10

−6
s
−1

corresponding to about 3%20

of maximum values.

It should be noted that the selected minimum gradient was based on the current

intercomparison, i.e. the data shown in Fig. 10 were the result of an iterative improve-

ment. This method of background determination is therefore dependent on at least one

comparison with a reference instrument to allow this optimisation. On the other hand,25

the magnitude of the gradient in a wide range only affected j (O1
D) at large SZA and

hardly influenced the regression results in Table 3.
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3.1.7 FZJ-SR3

Figure 11 depicts the FZJ-SR3 and the reference instrument data. Synchronisation

was made by averaging FZJ-SR3 data with ≈8 s time resolution over the scanning pe-

riods of the reference instrument using the same averaging windows as for DWD-SR.

The method of background subtraction was similar to that used for DWD-SR but the5

minimum gradient applied in the data analysis was smaller because the raw signals of

the instrument were lower. Nevertheless, with the selected gradient j (O1
D) measure-

ments were feasible up to SZA≈80
◦
.

The overall performance of FZJ-SR3 was comparable with DWD-SR. For j (NO2)

again good agreement within 1% was obtained. Slightly stronger deviations of the re-10

gression slopes and mean ratios of −4% and −6% were obtained for j (HCHO)m and

j (HCHO)r, respectively. Although the differences were within the estimated accuracy

for the spectral sensitivity measurements under laboratory conditions, the results hint

towards a general problem regarding the calibration of the SM-SR because all SM-SR

exhibited similar deviations for the j (HCHO). Because j (HCHO)r was affected more15

strongly than j (HCHO)m and j (NO2) was unaffected, differences seemed to increase

with decreasing wavelength. For j (O1
D) this trend may have been compensated or

even overcompensated by the background subtraction problems. A review of the cali-

bration procedure and further test could clarify the cause for these systematic effects.

This may also help to improve the performance for j (O1
D) measurements at large SZA.20

3.2 Filter radiometers

3.2.1 j (NO2)-FR

The j (NO2)-FR measurements provided continuous, highly time resolved (5 s) ana-

log voltage data. Background voltages were determined during the night at SZA≥98
◦

and then averaged and subtracted. Except for ULI-FR1 (1 min averages) where inter-25

polations were used, synchronisations with the reference j (NO2) data were made by
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averaging over the SR scanning periods using 45 s windows. Calibration factors were

obtained by linear regressions which were forced through the origins. These factors

were listed in Table 4. In Fig. 12 the corresponding photolysis frequencies were plotted

against the reference data for the second campaign period 7–12 June. All instruments

show very good linearity which is also reflected in the plots of the ratios as a function5

of SZA in Fig. 13. For the first campaign period where the opposite sides of the 4π sr

instruments were operative the figures look very similar. The data were therefore not

plotted separately. Calibration factors for this period, mean ratios and standard devia-

tions of the ratios can also be found in Table 4. For the calculation of all ratios data were

considered when j (NO2) was greater than 5% of maximum values which is consistent10

with the analysis for the SR in Table 3.

A single calibration factor was sufficient to convert the background corrected output

voltages to j (NO2). Except for ICL-FR a slight ≈5% increase of the ratios with SZA was

observed. This behaviour was explained by a non-ideal matching of the instrument

spectral sensitivities with the product σφ of NO2 photolysis. The spectral sensitivities15

of FZJ-FR1 and FZJ-FR2 were determined in the laboratory and the magnitude and

direction of the deviations were reproducible with the reference instrument spectra of

this work. The reason that ICL-FR showed the opposite behaviour remained unclear. It

may have contained a different filter combination. The small deviations towards larger

SZA could be compensated using polynomial calibration fits rather than single factors.20

However, the possible improvements were considered minor.

Three 2π sr instruments (ULI-FR1, UCR-FR1, MET-FR) were operated during the

whole campaign. If the results of the first period (1–6 June) and the second period (7–

12 June) were compared, a drift of about 1% towards smaller calibration factors was

consistently found for all three instruments. This drift was attributed to the reference25

instrument but considered insignificant within error limits.

A comparison with previous calibration factors showed good stability for most instru-

ments. Except for ICL-FR, PSI-FR and ULI-FR the previous calibration factors were

based on similar comparisons with FZJ-SR1 or FZJ-SR2 indicating stable calibration
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factors over several years. The previous ICL-FR calibration was obtained from a com-

parison with a reference FR calibrated with a chemical actinometer. Although these

calibrations dated back 10–15 years, the factors were still within a 5–8% range of the

2005 values confirming the long-term stability of the instrument. Nevertheless, regular

checks of calibration factors are recommended. If no spectroradiometer reference is5

available a calibrated j (NO2)-FR can be used as a secondary reference. Consistency

checks can also be made with 4π sr instruments by repeatedly rotating the instrument

under stable atmospheric conditions or by comparison with radiation transfer model re-

sults under clear sky conditions. However, model calculations should not be considered

as an absolute reference because of uncertainties regarding aerosol loads. Examples10

of the influence of air pollution on j (NO2) can be found elsewhere (e.g. Thielmann et al.,

2002; Hodzic et al., 2007).

3.2.2 j (O1
D)-FR

Also the j (O1
D)-FR measurements provided continuous, highly time resolved analog

voltage data. Background voltages were determined during the night at SZA≥98
◦

and15

then averaged and subtracted. With the exception of ULI-FR2 (1 min averages) syn-

chronisations with the reference j (O1
D) data were made by averaging over the refer-

ence scanning periods using 25 s windows.

j (O1
D)-FR data analysis was more complex because there was normally no linear

relationship between j (O1
D) and output voltages. The reason for this non-linearity was20

the strong variability of the solar spectrum in the UV-B range as a function of ozone

column and SZA combined with non-ideal spectral responses of the instruments. To

compensate this, output signals were multiplied by instrument-specific correction func-

tions considering ozone column and SZA prior to conversion to j (O1
D) with an ad-

justable calibration factor. These calculations were made by the participants using25

their usual routines after common data sets containing ozone columns, SZA and aver-

aged instrument voltages for the j (O1
D) measurement times were circulated. Ozone

columns were taken from NASA/GSFC TOMS (http://toms.gsfc.nasa.gov/) where daily
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data from the Earth-Probe satellite were available in June 2005.

From the j (O1
D)-FR data provided by the participants and the j (O1

D) reference data

linear regressions were fitted to obtain scaling factors to update previous calibration

factors. These scaling factors varied in a range 0.98–1.23 and were listed in Table 5.

Correlation plots and plots of the resulting ratios as a function of SZA can be found in5

Figs. 14 and 15. Table 5 also lists the mean j (O1
D) ratios and the 1σ standard devi-

ations. As for the spectroradiometers in these calculations only data were taken into

account when j (O1
D) was greater than 10% of maximum values. The respective data

points were color-coded in Fig. 15. Scaling factors were reported here instead of cal-

ibration factors to avoid confusion with the calibration factors in Table 4 which directly10

converted output voltages to j (NO2). Combinations of calibration factors and correc-

tion functions were necessary to obtain j (O1
D) but details of the correction functions

applied by the participants were complex and will not be discussed in this work.

Compared with the j (NO2)-FR the performance of the j (O1
D)-FR was poorer. Scat-

ter towards large SZA was greater and for some instruments significant systematic de-15

viations were evident at SZA greater than 60
◦
. Nevertheless, differences were accept-

able at smaller SZA or great j (O1
D). Systematic deviations at large SZA were attributed

to inadequate correction functions with regard to ozone column and SZA. These func-

tions were derived in the past from the spectral sensitivities of the instruments, sim-

ulated actinic flux spectra and the molecular data σ(O3) and φ(O
1
D). The theoretical20

background of this approach was described elsewhere (Bohn et al., 2004). Most partic-

ipants used parameterisations for the correction functions which were purchased with

the instruments. However, regarding φ(O
1
D) there were significant changes in the rec-

ommendations since 1994 (Matsumi et al., 2002; Hofzumahaus et al., 2004). Conse-

quently, older correction functions may have been outdated and improved corrections25

could not be calculated because the current spectral sensitivities of the instruments

were unknown. Overall based on the intercomparison alone no improvement of the

correction functions was feasible.

The deviations of the scaling factors from unity for some instruments indicated drifts
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of the calibration factors. This could be caused by an aging of the PMTs used for radia-

tion detection. Calibrations should therefore be made on a regular basis or before and

after field campaigns to trace any drifts. Alternatively irradiance standards can be used

to monitor drifts on a relative scale between successive calibrations. This method has

already been used in a long-term study on the relationship between j (O1
D) and OH5

radical concentrations (Rohrer and Berresheim, 2006). However, after technical prob-

lems, e.g. water penetration or replacement of optical components, calibrations against

a reference are essential to obtain new calibrations factors and to check the validity of

the correction functions. Irradiance standards can also be used for absolute calibra-

tions of j (O1
D)-FR if the relative spectral sensitivities are known (Bohn et al., 2004)10

but this approach was not considered here because the data were not available. Fi-

nally, j (O1
D)-FR data should be corrected for the significant temperature dependence

of j (O1
D) for which parameterisations were derived (Bohn et al., 2004). For the current

work no such correction was necessary.

4 Conclusions15

The DM-SR used in this work showed good agreement within estimated instrumen-

tal uncertainties (≈2% for j (NO2)). Somewhat larger discrepancies for one instrument

were explained by a suboptimal optical teflon receiver. For future applications this

instrument will be equipped with a receiver with improved angular response proper-

ties. The major drawback of the DM-SR was the long scanning time with sequential20

recording of spectra producing measurement uncertainties under variable atmospheric

conditions. On the other hand the technique was essential as a reference for accurate

and sensitive measurements in the UV-B.

For the diode array based SM-SR agreement with the DM-SR reference was good for

j (NO2) and j (HCHO) with minor (≤8%) systematic deviations for j (HCHO). The SM-SR25

suffered from sensitivities decreasing with wavelength in the UV, insufficient stray-light

suppression and cross-talk within the detector arrays. Consequently, accuracies in the
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UV-B were slightly poorer and j (O1
D) values obtained at larger SZA were dependent on

the method of background determination. For j (O1
D) the gradient method searching for

the atmospheric cutoff in the spectra provided slightly better results than background

determinations in a range below 290 nm. The problem of low UV sensitivities was

recently improved with instruments using CCD array detectors rather than diode arrays5

but the method of background determination remains a critical issue (e.g. Eckstein

et al., 2003; Jäkel et al., 2007). It is believed that SM-SR will become a standard

for photolysis frequency measurements because of undeniable advantages regarding

time resolution, stability and weight. However, comparisons with DM-SR references

will remain a useful means to characterise the instruments and to optimise methods10

of background subtraction. Within the ACCENT project a further intercomparison is

planned with different types of CCD array and diode array based SM-SR.

j (NO2)-FR are reliable instruments for j (NO2) measurements with a high degree of

linearity and good detection limit allowing measurements until sunset or even beyond.

In this work no indication for stronger drifts of calibration factors was found.15

j (O1
D)-FR also provide a useful alternative for spectroradiometer measurements.

However, data analysis is rather complex and calibration factors seemed to be subject

to considerable drifts illustrating the need for regular calibration checks. In addition

stronger deviations towards larger SZA clearly indicated the need for updated charac-

terisations of the instruments and calculation of consistent correction functions. During20

the ACCENT project a number of the j (O1
D)-FR addressed in this work were modified.

New interference filters were inserted and spectral characterisations were made which

led to significant improvements. Upon completion these activities will be described in

a separate paper.

The conclusions of the present work are in general agreement with a previous exten-25

sive study on photolysis frequency measurements and modelling, namely IPMMI (Bais

et al., 2003; Cantrell et al., 2003; Shetter et al., 2003; Hofzumahaus et al., 2004). In

these studies also slightly better agreement was obtained for j (NO2) than for j (O1
D) in

particular towards larger SZA. However, besides radiative transfer models also chem-
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ical actinometers were employed as absolute references during IPMMI. The choice

of molecular data used in this work is based on the IPMMI based recommendations

consistent with previous comparisons of spectroradiometers and chemical actinome-

ters (e.g. Müller et al., 1995; Kraus et al., 2000). Thus it is expected that the data

of this work are both accurate within about 5–10% and consistent because the data5

analyses were based on the same molecular data. However, this may not apply for

j (HCHO) where greater uncertainties still exist in particular for the quantum yields of

the molecular and radical reaction channels.
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Table 1. Overview of contributing institutions, acronyms, and instruments: Double-

monochromator spectroradiometers (DM-SR), single-monochromator spectroradiometers (SM-

SR) and different types of filter radiometers (FR). Plus signs (+) indicate a further, similar in-

strument.

Institution DM-SR SM-SR j (NO2)-FR j (O1
D)-FR

Forschungszentrum Jülich FZJ FZJ-SR1 + SR2 FZJ-SR3 FZJ-FR1
a
+ FR2

a
FZJ-FR3 + FR4

Deutscher Wetterdienst DWD − DWD-SR DWD-FR1
a

DWD-FR2 + FR3

University of Leicester ULI − ULI-SR ULI-FR1 ULI-FR2

University of Crete UCR − − UCR-FR1 UCR-FR2

Max Planck Institute for Chemistry MPIC − − MPIC-FR1 + FR2 −

University of Heidelberg IUP IUP-SR − − −

University of Leeds ULE − − − ULE-FR

Imperial College London ICL − − ICL-FR
a

−

Paul Scherrer Institute PSI − − PSI-FR
a

−

Metcon GmbH MET − − MET-FR −

a
4π sr instruments with two opposite 2π sr receiver optics
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Table 2. Ratios j/jref of photolysis frequencies calculated from simulated TUV 4.3 clear sky

solar actinic flux spectra. The reference spectrum was simulated for 1 June 11:20 UTC (noon)

with a wavelength resolution of 0.1 nm. Photolysis frequencies were calculated using Eq. (9).

jref was obtained using ∆λ=0.1 nm. The j were calculated after imposing different spectral

resolutions (FWHM) to the reference spectrum and using experimental ∆λ and two methods

of numerical integration. Method 1: re-interpolation of Fλ spectra to a 0.1 nm wavelength grid.

Method 2: σ×φ averages over FWHM wavelength ranges (see Sect. 3.1.1).

DM-SR: FWHM=1.0 nm, ∆λ=1.0 nm SM-SR: FWHM=2.0 nm, ∆λ=0.83 nm

process method 1 method 2 method 1 method 2

j (NO2) 0.999 0.999 0.999 0.994

j (HCHO)m 0.982 0.984 0.971 0.963

j (HCHO)r 0.981 0.984 0.969 0.956

j (O1
D) 1.010 1.008 1.025 1.015
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Table 3. Spectroradiometer instrument results overview. Linear regressions (slopes and in-

tercepts) and mean ratios (instrument/reference, reference=FZJ-SR1). For the calculation of

mean ratios data were selected where photolysis frequencies were greater than 5% of maxi-

mum values for j (NO2) and j (HCHO), and greater than 10% of maximum values for j (O1
D).

The errors of the mean ratios are 1σ standard deviations. N= number of data points during the

period 1–12 June 2005. Numbers in brackets are exponents to base 10.

j (NO2) j (HCHO)m j (HCHO)r j (O1
D)

instrument N slope intercept / s
−1

slope intercept / s
−1

slope intercept / s
−1

slope intercept / s
−1

FZJ-SR2
a

5281 0.992 −9.0(−6) 0.991 −6.1(−8) 0.999 −4.7(−8) 1.016 −3.2(−8)

IUP-SR
a

1693 1.023 −8.1(−5) 1.041 −2.1(−7) 1.049 −1.5(−7) 1.075 −9.6(−8)

ULI-SR
b

5960 0.971 1.8(−5) 0.953 7.1(−8) 0.919 6.7(−8) 0.963 4.5(−7)

DWD-SR
c

5975 0.998 1.5(−5) 0.969 −1.9(−9) 0.968 −1.6(−8) 1.008 −2.8(−8)

FZJ-SR3
c

6731 1.004 2.1(−5) 0.959 2.8(−8) 0.944 3.4(−9) 0.978 2.0(−8)

Nd
ratio ratio ratio ratio

FZJ-SR2
a

2913–4106 0.988±0.035 0.984±0.035 0.991±0.036 1.009±0.038

IUP-SR
a

911–1316 0.986±0.063 1.016±0.058 1.026±0.059 1.050±0.061

ULI-SR
b

3448–4759 0.977±0.023 0.958±0.024 0.927±0.024 1.028±0.067

DWD-SR
c

3404–4974 1.008±0.014 0.973±0.011 0.969±0.011 1.008±0.020

FZJ-SR3
c

3708–5400 1.014±0.013 0.963±0.009 0.945±0.009 0.985±0.023

a
Reference instrument data interpolated to measurement times

b
Instrument data interpolated to reference measurement times

c
Averaged data over reference instrument scanning intervals

d
Minimum N corresponds to j (O1

D), maximum N corresponds to j (NO2)
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Table 4. j (NO2)-FR results overview. Calibration factors from linear regressions of this work,

previous calibration factors, and mean ratios of j (NO2) (instrument/reference) after application

of the calibration factors. Error limits of mean ratios correspond to 1σ standard deviations. For

the ratios data were considered where j (NO2) was greater than 5% of maximum values.

instrument # calibration period calibration factor / 10
−3

s
−1

V
−1

ratio

this work (2005) previous (year)

4π sr instruments

ICL-FR 012 1–6 June 1.91 1.76
a

1.003±0.030

010 7–12 June 1.87 1.97
a

1.000±0.033

PSI-FR 401 1–6 June 1.02 1.04
b

1.009±0.020

402 7–12 June 1.08 1.13
b

1.008±0.021

DWD-FR1 511 1–6 June 1.37 1.31 (2001) 1.014±0.027

501 7–12 June 1.01 1.03 (2004) 1.011±0.022

FZJ-FR1 614 1–6 June 1.55 1.54 (2002) 1.009±0.025

615 7–12 June 1.34 1.32 (2002) 1.010±0.024

FZJ-FR2 616 1–6 June 1.34 1.26 (2002) 1.009±0.027

617 7–12 June 1.47 1.43 (2002) 1.010±0.022

2π sr instruments

MET-FR 739 1–12 June 2.27 2.32 (2001) 1.009±0.022

1–6 June 2.28 1.010±0.023

7–12 June 2.26 1.009±0.021

UCR-FR1 741 1–12 June 1.68 1.69 (2004) 1.005±0.019

1–6 June 1.69 1.007±0.019

7–12 June 1.67 1.005±0.020

ULI-FR1 n/a 1–12 June 4.67 4.59 (2002) 1.011±0.030

1–6 June 4.70 1.011±0.026

7–12 June 4.63 1.010±0.032

MPIC-FR1 408 9–12 June 5.79 5.64 (2004) 1.011±0.024

MPIC-FR2 686 9–12 June 5.07 5.12 (2004) 1.013±0.025

a
10–15 year old calibration based on a comparison with a reference FR calibrated against a chemical actinometer.

b
The date of the calibration is unknown. Previously applied factors were greater by a factor of two to account for the use of a voltage divider.
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Table 5. j (O1
D)-FR results overview. Scaling factors from linear regressions of this work up-

dating old calibration factors and mean ratios of j (O1
D) (instrument/reference) after application

of the scaling factors. Error limits of mean ratios correspond to 1σ standard deviations. For the

ratios data were considered where j (O1
D) was greater than 10% of maximum values.

Instrument # calibration period scaling factor ratio

this work / old (year)

UCR-FR2 102 1–12 June 1.230 (2003) 0.979±0.047

FZJ-FR3 110 1–12 June 1.163 (2003) 0.993±0.027

ULE-FR 111 1–12 June 0.985 (2002) 0.994±0.026

FZJ-FR4 119 1–12 June 1.169 (2003) 1.008±0.037

DWD-FR2 120 1–12 June 0.994 (2004) 1.006±0.041

DWD-FR3 126 1–12 June 1.015 (2004) 0.997±0.024

ULI-FR2 n/a 1–12 June 1.225 (2002) 1.000±0.089
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Fig. 1. Upper panels: Relative response Zp of the reference instrument receiver optics as a

function of polar angle and wavelength. The two plots show the dependencies for two perpen-

dicular orientations with respect to azimuth angles. Lower panels: Zp from the upper panels

multiplied by sin(ϑ) indicating the relative weight for an isotropic sky radiance distribution of the

upper hemisphere.
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Fig. 2. Correction factors 1/ZH for isotropic sky radiation from the upper hemisphere as a

function of wavelength. Left and right panels correspond to left and right panels in Fig. 1,

respectively. Variations at short wavelengths were caused by low signals from laboratory lamps.

The full lines show a fitted mean dependence considering all measured data.
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Fig. 3. Photograph taken at the roof platform at Forschungszentrum Jülich on 1 June 2005

during the measurement campaign.
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Fig. 4. 1-min averages of global shortwave radiation (solar irradiance) during the 2005 mea-

surement campaign (blue). The strong variability indicated mostly cloudy conditions. The red

line shows clear sky data from 12 June 2006 for comparison.
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Fig. 5. j (NO2) during the 2005 measurement period. Data were obtained with FZJ-SR2.

Red: total j (NO2), blue: j (NO2) from diffuse sky radiation. The differences corresponded to the

contributions from direct sun.
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D), blue: j (O1

D) from diffuse sky radiation. The differences corresponded to the

contributions from direct sun.
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Fig. 7. Left: Correlation plots of photolysis frequencies from FZJ-SR1 and FZJ-SR2 during

the period 1–12 June 2005 (N=5281). Data of FZJ-SR1 were interpolated to the measurement

times of FZJ-SR2. Full lines show linear regressions (Table 3). Dashed black lines indicate the

1:1 relationships. Right: Ratios of photolysis frequencies as a function of solar zenith angles.

Red data points indicate values below 5% of maximum values for j (NO2) and j (HCHO), and

below 10% of maximum values for j (O1
D).
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Fig. 8. Left: Correlation plots of photolysis frequencies from FZJ-SR1 and IUP-SR during the

period 2–12 June 2005 (N=1693). Data of FZJ-SR1 were interpolated to the measurement

times of IUP-SR. See Fig. 7 for more details.
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Fig. 9. Left: Correlation plots of photolysis frequencies from FZJ-SR1 and ULI-SR during the

period 1–12 June 2005 (N=5960). Data of ULI-SR were interpolated to the measurement times

of FZJ-SR1. See Fig. 7 for more details.
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Fig. 10. Left: Correlation plots of photolysis frequencies from FZJ-SR1 and DWD-SR during

the period 1–12 June 2005 (N=5975). Data of DWD-SR were averaged over the scanning

periods of FZJ-SR1. See Fig. 7 for more details.
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Fig. 11. Left: Correlation plots of photolysis frequencies from FZJ-SR1 and FZJ-SR3 during

the period 1–12 June 2005 (N=6731). Data of FZJ-SR3 were averaged over the scanning

periods of FZJ-SR1. See Fig. 7 for more details.
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Fig. 12. Correlation plots of j (NO2) photolysis frequencies from FZJ-SR1 and j (NO2)-FR

during the period 7–12 June 2005. Full lines correspond to 1:1 relationships after application

of the calibration factors from Table 4.
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Fig. 13. Ratios of j (NO2) photolysis frequencies as a function of solar zenith angle during the

period 7–12 June 2005. Red data points indicate values below 5% of maximum values.
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Fig. 14. Correlation plots of j (O1
D) photolysis frequencies from FZJ-SR1 and j (O1

D)-FR

during the period 1–12 June 2005. Full lines correspond to 1:1 relationships after application

of the scaling factors from Table 5.

10351



ACPD

8, 10301–10352, 2008

ACCENT photolysis

frequencies

B. Bohn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

     

0.5

1.0

1.5

     

 

 

 

     

0.5

1.0

1.5

     

 

 

 

     

0.5

1.0

1.5

20 40 60 80 100

SZA / deg

 

 

 

20 40 60 80 100

SZA / deg

0.5

1.0

1.5

UCR−FR2 FZJ−FR3

ULE−FR FZJ−FR4

DWD−FR2 DWD−FR3

ULI−FR2

j(
O

1
D

)(
F

R
) 

/ 
j(

O
1
D

)(
S

R
)

Fig. 15. Ratios of j (O1
D) photolysis frequencies as a function of solar zenith angle during the

period 1–12 June 2005. Red data points indicate values below 10% of maximum values.
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