000062405 001__ 62405
000062405 005__ 20180211181406.0
000062405 0247_ $$2pmid$$apmid:18396316
000062405 0247_ $$2DOI$$a10.1016/j.chemosphere.2008.02.041
000062405 0247_ $$2WOS$$aWOS:000257223700021
000062405 037__ $$aPreJuSER-62405
000062405 041__ $$aeng
000062405 082__ $$a333.7
000062405 084__ $$2WoS$$aEnvironmental Sciences
000062405 1001_ $$0P:(DE-Juel1)129545$$aTappe, W.$$b0$$uFZJ
000062405 245__ $$aGrowth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays
000062405 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2008
000062405 300__ $$a836 - 843
000062405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000062405 3367_ $$2DataCite$$aOutput Types/Journal article
000062405 3367_ $$00$$2EndNote$$aJournal Article
000062405 3367_ $$2BibTeX$$aARTICLE
000062405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000062405 3367_ $$2DRIVER$$aarticle
000062405 440_0 $$01228$$aChemosphere$$v72$$x0045-6535
000062405 500__ $$aRecord converted from VDB: 12.11.2012
000062405 520__ $$aThe ionic speciation of sulfonamides is pH-driven and this may be crucial for their bioavailability and sorption to soil constituents, as well as for their uptake into bacterial cells. The inhibition behaviour of a bacterial test strain (Pseudomonas aeruginosa; DSM 1117), which was grown in the presence of different concentrations of 8 sulfonamides at pH values from 5 to 8, could be predicted by models that take the speciation of sulfonamides in- and outside of bacterial cells into account. Assuming a pH of 7.5 inside the cells (pH homeostasis), the strongest inhibition was predicted for the lowest external pH and for sulfonamides with the lowest pK(a) values. Growth experiments with Ps. aeruginosa basically reflected this predicted behaviour. However, Pantoea agglomerans -- a bacterial strain isolated from arable soil -- behaved surprisingly different regarding its pH dependency: all sulfonamides showed the strongest effects at pH 7 to 8 instead of being most effective at lowest pH, although the pK(a) dependencies followed the same pattern. Experimental and modeling results could be brought into good agreement for P. agglomerans if the cell-internal pH was admitted to approximate the external pH instead of implying pH homeostasis for modeling calculations. Thus, besides the actual concentration of sulfonamides, the pH dependent mode of reaction of different bacteria to sulfonamides may additionally govern the population dynamics in soils.
000062405 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000062405 588__ $$aDataset connected to Web of Science, Pubmed
000062405 650_2 $$2MeSH$$aAnti-Bacterial Agents: analysis
000062405 650_2 $$2MeSH$$aAnti-Bacterial Agents: metabolism
000062405 650_2 $$2MeSH$$aAnti-Bacterial Agents: toxicity
000062405 650_2 $$2MeSH$$aBacteria: chemistry
000062405 650_2 $$2MeSH$$aBacteria: drug effects
000062405 650_2 $$2MeSH$$aBacteria: metabolism
000062405 650_2 $$2MeSH$$aBiological Assay
000062405 650_2 $$2MeSH$$aCulture Media
000062405 650_2 $$2MeSH$$aData Interpretation, Statistical
000062405 650_2 $$2MeSH$$aHomeostasis
000062405 650_2 $$2MeSH$$aHydrogen-Ion Concentration
000062405 650_2 $$2MeSH$$aModels, Statistical
000062405 650_2 $$2MeSH$$aPantoea: chemistry
000062405 650_2 $$2MeSH$$aPantoea: drug effects
000062405 650_2 $$2MeSH$$aPantoea: metabolism
000062405 650_2 $$2MeSH$$aPseudomonas aeruginosa: chemistry
000062405 650_2 $$2MeSH$$aPseudomonas aeruginosa: drug effects
000062405 650_2 $$2MeSH$$aPseudomonas aeruginosa: metabolism
000062405 650_2 $$2MeSH$$aSoil Microbiology
000062405 650_2 $$2MeSH$$aSulfonamides: analysis
000062405 650_2 $$2MeSH$$aSulfonamides: metabolism
000062405 650_2 $$2MeSH$$aSulfonamides: toxicity
000062405 650_7 $$00$$2NLM Chemicals$$aAnti-Bacterial Agents
000062405 650_7 $$00$$2NLM Chemicals$$aCulture Media
000062405 650_7 $$00$$2NLM Chemicals$$aSulfonamides
000062405 650_7 $$2WoSType$$aJ
000062405 65320 $$2Author$$aantimicrobials
000062405 65320 $$2Author$$atoxicity
000062405 65320 $$2Author$$apH homeostasis
000062405 65320 $$2Author$$aspeciation
000062405 65320 $$2Author$$aEC50
000062405 7001_ $$0P:(DE-Juel1)VDB72654$$aZarfl, C.$$b1$$uFZJ
000062405 7001_ $$0P:(DE-Juel1)VDB10888$$aKummer, S.$$b2$$uFZJ
000062405 7001_ $$0P:(DE-Juel1)VDB202$$aBurauel, P.$$b3$$uFZJ
000062405 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000062405 7001_ $$0P:(DE-Juel1)129462$$aGroeneweg, J.$$b5$$uFZJ
000062405 773__ $$0PERI:(DE-600)1496851-4$$a10.1016/j.chemosphere.2008.02.041$$gVol. 72, p. 836 - 843$$p836 - 843$$q72<836 - 843$$tChemosphere$$v72$$x0045-6535$$y2008
000062405 8567_ $$uhttp://dx.doi.org/10.1016/j.chemosphere.2008.02.041
000062405 909CO $$ooai:juser.fz-juelich.de:62405$$pVDB
000062405 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000062405 9141_ $$y2008
000062405 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000062405 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000062405 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2
000062405 970__ $$aVDB:(DE-Juel1)98643
000062405 980__ $$aVDB
000062405 980__ $$aConvertedRecord
000062405 980__ $$ajournal
000062405 980__ $$aI:(DE-Juel1)IBG-3-20101118
000062405 980__ $$aI:(DE-Juel1)VDB1045
000062405 980__ $$aUNRESTRICTED
000062405 981__ $$aI:(DE-Juel1)IBG-3-20101118
000062405 981__ $$aI:(DE-Juel1)VDB1045