001     62405
005     20180211181406.0
024 7 _ |2 pmid
|a pmid:18396316
024 7 _ |2 DOI
|a 10.1016/j.chemosphere.2008.02.041
024 7 _ |2 WOS
|a WOS:000257223700021
037 _ _ |a PreJuSER-62405
041 _ _ |a eng
082 _ _ |a 333.7
084 _ _ |2 WoS
|a Environmental Sciences
100 1 _ |a Tappe, W.
|b 0
|u FZJ
|0 P:(DE-Juel1)129545
245 _ _ |a Growth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2008
300 _ _ |a 836 - 843
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Chemosphere
|x 0045-6535
|0 1228
|v 72
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The ionic speciation of sulfonamides is pH-driven and this may be crucial for their bioavailability and sorption to soil constituents, as well as for their uptake into bacterial cells. The inhibition behaviour of a bacterial test strain (Pseudomonas aeruginosa; DSM 1117), which was grown in the presence of different concentrations of 8 sulfonamides at pH values from 5 to 8, could be predicted by models that take the speciation of sulfonamides in- and outside of bacterial cells into account. Assuming a pH of 7.5 inside the cells (pH homeostasis), the strongest inhibition was predicted for the lowest external pH and for sulfonamides with the lowest pK(a) values. Growth experiments with Ps. aeruginosa basically reflected this predicted behaviour. However, Pantoea agglomerans -- a bacterial strain isolated from arable soil -- behaved surprisingly different regarding its pH dependency: all sulfonamides showed the strongest effects at pH 7 to 8 instead of being most effective at lowest pH, although the pK(a) dependencies followed the same pattern. Experimental and modeling results could be brought into good agreement for P. agglomerans if the cell-internal pH was admitted to approximate the external pH instead of implying pH homeostasis for modeling calculations. Thus, besides the actual concentration of sulfonamides, the pH dependent mode of reaction of different bacteria to sulfonamides may additionally govern the population dynamics in soils.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Anti-Bacterial Agents: analysis
650 _ 2 |2 MeSH
|a Anti-Bacterial Agents: metabolism
650 _ 2 |2 MeSH
|a Anti-Bacterial Agents: toxicity
650 _ 2 |2 MeSH
|a Bacteria: chemistry
650 _ 2 |2 MeSH
|a Bacteria: drug effects
650 _ 2 |2 MeSH
|a Bacteria: metabolism
650 _ 2 |2 MeSH
|a Biological Assay
650 _ 2 |2 MeSH
|a Culture Media
650 _ 2 |2 MeSH
|a Data Interpretation, Statistical
650 _ 2 |2 MeSH
|a Homeostasis
650 _ 2 |2 MeSH
|a Hydrogen-Ion Concentration
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Pantoea: chemistry
650 _ 2 |2 MeSH
|a Pantoea: drug effects
650 _ 2 |2 MeSH
|a Pantoea: metabolism
650 _ 2 |2 MeSH
|a Pseudomonas aeruginosa: chemistry
650 _ 2 |2 MeSH
|a Pseudomonas aeruginosa: drug effects
650 _ 2 |2 MeSH
|a Pseudomonas aeruginosa: metabolism
650 _ 2 |2 MeSH
|a Soil Microbiology
650 _ 2 |2 MeSH
|a Sulfonamides: analysis
650 _ 2 |2 MeSH
|a Sulfonamides: metabolism
650 _ 2 |2 MeSH
|a Sulfonamides: toxicity
650 _ 7 |0 0
|2 NLM Chemicals
|a Anti-Bacterial Agents
650 _ 7 |0 0
|2 NLM Chemicals
|a Culture Media
650 _ 7 |0 0
|2 NLM Chemicals
|a Sulfonamides
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a antimicrobials
653 2 0 |2 Author
|a toxicity
653 2 0 |2 Author
|a pH homeostasis
653 2 0 |2 Author
|a speciation
653 2 0 |2 Author
|a EC50
700 1 _ |a Zarfl, C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB72654
700 1 _ |a Kummer, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB10888
700 1 _ |a Burauel, P.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB202
700 1 _ |a Vereecken, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)129549
700 1 _ |a Groeneweg, J.
|b 5
|u FZJ
|0 P:(DE-Juel1)129462
773 _ _ |a 10.1016/j.chemosphere.2008.02.041
|g Vol. 72, p. 836 - 843
|p 836 - 843
|q 72<836 - 843
|0 PERI:(DE-600)1496851-4
|t Chemosphere
|v 72
|y 2008
|x 0045-6535
856 7 _ |u http://dx.doi.org/10.1016/j.chemosphere.2008.02.041
909 C O |o oai:juser.fz-juelich.de:62405
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 2
970 _ _ |a VDB:(DE-Juel1)98643
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21