000006244 001__ 6244
000006244 005__ 20200423202558.0
000006244 0247_ $$2DOI$$a10.1071/FP09184
000006244 0247_ $$2WOS$$aWOS:000271464600013
000006244 0247_ $$2altmetric$$aaltmetric:21802640
000006244 037__ $$aPreJuSER-6244
000006244 041__ $$aeng
000006244 082__ $$a580
000006244 084__ $$2WoS$$aPlant Sciences
000006244 1001_ $$0P:(DE-Juel1)129373$$aNagel, K. A.$$b0$$uFZJ
000006244 245__ $$aTemperature responses of roots: impact on growth, root system architecture and implications for phenotyping
000006244 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2009
000006244 300__ $$a947 - 959
000006244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006244 3367_ $$2DataCite$$aOutput Types/Journal article
000006244 3367_ $$00$$2EndNote$$aJournal Article
000006244 3367_ $$2BibTeX$$aARTICLE
000006244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006244 3367_ $$2DRIVER$$aarticle
000006244 440_0 $$09141$$aFunctional Plant Biology$$v36$$x1445-4408$$y11
000006244 500__ $$aRecord converted from VDB: 12.11.2012
000006244 520__ $$aRoot phenotyping is a challenging task, mainly because of the hidden nature of this organ. Only recently, imaging technologies have become available that allow us to elucidate the dynamic establishment of root structure and function in the soil. In root tips, optical analysis of the relative elemental growth rates in root expansion zones of hydroponically-grown plants revealed that it is the maximum intensity of cellular growth processes rather than the length of the root growth zone that control the acclimation to dynamic changes in temperature. Acclimation of entire root systems was studied at high throughput in agar-filled Petri dishes. In the present study, optical analysis of root system architecture showed that low temperature induced smaller branching angles between primary and lateral roots, which caused a reduction in the volume that roots access at lower temperature. Simulation of temperature gradients similar to natural soil conditions led to differential responses in basal and apical parts of the root system, and significantly affected the entire root system. These results were supported by first data on the response of root structure and carbon transport to different root zone temperatures. These data were acquired by combined magnetic resonance imaging (MRI) and positron emission tomography ( PET). They indicate acclimation of root structure and geometry to temperature and preferential accumulation of carbon near the root tip at low root zone temperatures. Overall, this study demonstrated the value of combining different phenotyping technologies that analyse processes at different spatial and temporal scales. Only such an integrated approach allows us to connect differences between genotypes obtained in artificial high throughput conditions with specific characteristics relevant for field performance. Thus, novel routes may be opened up for improved plant breeding as well as for mechanistic understanding of root structure and function.
000006244 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000006244 588__ $$aDataset connected to Web of Science
000006244 650_7 $$2WoSType$$aJ
000006244 65320 $$2Author$$aBrassica napus
000006244 65320 $$2Author$$amagnetic resonance imaging
000006244 65320 $$2Author$$apositron emission tomography
000006244 65320 $$2Author$$aroot branching
000006244 65320 $$2Author$$atemperature gradient
000006244 65320 $$2Author$$aZea mays
000006244 7001_ $$0P:(DE-Juel1)129343$$aKastenholz, B.$$b1$$uFZJ
000006244 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b2$$uFZJ
000006244 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, D.$$b3$$uFZJ
000006244 7001_ $$0P:(DE-HGF)0$$aAach, T.$$b4
000006244 7001_ $$0P:(DE-HGF)0$$aMühlich, M.$$b5
000006244 7001_ $$0P:(DE-HGF)0$$aTruhn, D.$$b6
000006244 7001_ $$0P:(DE-Juel1)129394$$aScharr, H.$$b7$$uFZJ
000006244 7001_ $$0P:(DE-HGF)0$$aTerjung, St.$$b8
000006244 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b9$$uFZJ
000006244 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b10$$uFZJ
000006244 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP09184$$gVol. 36, p. 947 - 959$$p947 - 959$$q36<947 - 959$$tFunctional plant biology$$v36$$x1445-4408$$y2009
000006244 8567_ $$uhttp://dx.doi.org/10.1071/FP09184
000006244 8564_ $$uhttps://juser.fz-juelich.de/record/6244/files/FZJ-6244.pdf$$yRestricted$$zPublished final document.
000006244 909CO $$ooai:juser.fz-juelich.de:6244$$pVDB
000006244 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000006244 9141_ $$y2009
000006244 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000006244 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000006244 970__ $$aVDB:(DE-Juel1)114427
000006244 980__ $$aVDB
000006244 980__ $$aConvertedRecord
000006244 980__ $$ajournal
000006244 980__ $$aI:(DE-Juel1)IBG-2-20101118
000006244 980__ $$aUNRESTRICTED
000006244 981__ $$aI:(DE-Juel1)IBG-2-20101118
000006244 981__ $$aI:(DE-Juel1)ICG-3-20090406